Oxygen reduction reaction mechanism on P, N co-doped graphene: a density functional theory study

被引:39
|
作者
Liang, Zhao [1 ]
Liu, Chao [1 ,2 ]
Chen, Mingwei [1 ]
Qi, Xiaopeng [1 ]
Kumar, Pramod U. [1 ]
Peera, S. Gouse [3 ]
Liu, Juan [4 ]
He, Julong [2 ]
Liang, Tongxiang [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Mat Sci & Engn, Ganzhou 341000, Peoples R China
[2] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[3] Keimyung Univ, Dept Environm Sci & Engn, Daegu 42601, South Korea
[4] Hunan Univ Technol, Sch Packaging & Mat Engn, Key Lab Adv Packaging Mat & Technol Hunan Prov, Zhuzhou 412007, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH ELECTROCATALYTIC ACTIVITY; REACTION PATHWAYS; CARBON CATALYSTS; NITROGEN; BORON; NANOSHEETS; ALKALINE; PROGRESS; SILICON; DESIGN;
D O I
10.1039/c9nj04808a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, heteroatom co-doped carbon material catalysts have shown extraordinary oxygen reduction reaction (ORR) catalytic activity, but a lack of understanding of the specific mechanism of the ORR has hindered their further development. In this study, we studied the geometric structure, stability, electronic properties, catalytic sites and detailed ORR pathways of P, N co-doped graphene (PN-Gra) by density functional theory (DFT) calculations, trying to reveal the effect of N and P co-doped graphene on the catalytic activity of the ORR. Our calculations indicate that the PN-Gra structure remains stable at high temperature (1000 K) and P, N atoms with their adjacent four carbon atoms constitute the active region to adsorb O-2 more efficiently than single phosphorus or nitrogen doped catalysts. Combining energy barrier and free energy diagram analysis, the most favorable pathway is O-2* -> O* + O* -> OH* + O* -> 2OH* -> OH* + H2O -> 2H(2)O, which is thermodynamically favorable and the associated energy barrier is low, with an overpotential of 0.96 V. After comprehensive analysis and comparison, P, N co-doping does improve the catalytic ability due to the synergistic effect compared to single doping. We believe that this study provides researchers a way to understand the reaction mechanism and ways to improve the catalytic properties of carbon-based materials.
引用
收藏
页码:19308 / 19317
页数:10
相关论文
共 50 条
  • [1] Density functional theory study of the oxygen reduction reaction mechanism in a BN co-doped graphene electrocatalyst
    Kattel, Shyam
    Atanassov, Plamen
    Kiefer, Boris
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (26) : 10273 - 10279
  • [2] The mechanism study of oxygen reduction reaction (ORR) on non-equivalent P, N co-doped graphene
    Han, Chaoling
    Chen, Zhenqian
    APPLIED SURFACE SCIENCE, 2020, 511 (511)
  • [3] Density Functional Study of Oxygen Reduction Reaction on Oxygen Doped Graphene
    Sun, Jianping
    Liang, Xiaodong
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LOGISTICS, ENGINEERING, MANAGEMENT AND COMPUTER SCIENCE (LEMCS 2015), 2015, 117 : 586 - 591
  • [4] Oxygen Reduction Reaction on sulfur doped graphene by density functional study
    Sun, J. P.
    Liang, X. D.
    ADVANCES IN ENERGY, ENVIRONMENT AND MATERIALS SCIENCE, 2016, : 647 - 651
  • [5] N, P co-doped graphene enriched phosphorus as a highly efficient oxygen reduction catalyst
    Liao, Yalin
    Chen, Hui
    Ou, Changrui
    Bao, Lishi
    Li, Run
    Liu, Hongbo
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 921
  • [6] Bifunctional mechanism of N, P co-doped graphene for catalyzing oxygen reduction and evolution reactions
    Xue, Xiong-Xiong
    Tang, Li-Ming
    Chen, Keqiu
    Zhang, Lixin
    Wang, En-ge
    Feng, Yexin
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (10)
  • [7] Adsorption properties of O2 on the unequal amounts of binary co-doped graphene by B/N and P/N: A density functional theory study
    Han, Chaoling
    Chen, Zhenqian
    APPLIED SURFACE SCIENCE, 2019, 471 : 445 - 454
  • [8] Production of P, N Co-doped Graphene-Based Materials by a Solution Process and Their Electrocatalytic Performance for Oxygen Reduction Reaction
    Jang, Dawoon
    Lee, Seungjun
    Kim, Sujin
    Choi, Kwangrok
    Park, Sunghee
    Oh, Junghoon
    Park, Sungjin
    CHEMNANOMAT, 2018, 4 (01): : 118 - 123
  • [9] A DFT study of the oxygen reduction reaction mechanism on be doped graphene
    Kwawu, Caroline R.
    Aniagyei, Albert
    Konadu, Destiny
    Limbey, Kenneth
    Menkah, Elliot
    Tia, Richard
    Adei, Evans
    CHEMICAL PAPERS, 2022, 76 (07) : 4471 - 4480
  • [10] B-N Co-Doped Graphene: Stability and Catalytic Activity in Oxygen Reduction Reaction - A Theoretical Insight
    Wang, Jinlong
    Guoa, Jinmin
    Liua, Yang-Yi
    Lia, Peng
    Fanga, Qiufeng
    Li, Xiao-Chun
    Song, Wei
    CHEMPHYSCHEM, 2024, 25 (20)