Pairing of zeros and critical points for random polynomials

被引:19
作者
Hanin, Boris [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02142 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 03期
基金
美国国家科学基金会;
关键词
Zeros; Critical points; Random polynomials; Gauss-Lucas;
D O I
10.1214/16-AIHP767
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let p(N) be a random degree N polynomial in one complex variable whose zeros are chosen independently from a fixed probability measure mu on the Riemann sphere S-2. This article proves that if we condition p(N) to have a zero at some fixed point xi is an element of S-2, then, with high probability, there will be a critical point omega xi at a distance N-1 away from xi. This N-1 distance is much smaller than the N-1/2 typical spacing between nearest neighbors for N i.i.d. points on S-2. Moreover, with the same high probability, the argument of omega xi relative to xi is a deterministic function of mu plus fluctuations on the order of N-1.
引用
收藏
页码:1498 / 1511
页数:14
相关论文
共 20 条
[1]  
Abbott P., TORRENCE SENDOVS CON
[2]   Random polynomials and green functions [J].
Bloom, T .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (28) :1689-1708
[3]  
Bloom T, 2007, MATH RES LETT, V14, P469
[4]   Saddle points in the chaotic analytic function and Ginibre characteristic polynomial [J].
Dennis, MR ;
Hannay, JH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12) :3379-3383
[5]  
Do Y., ROOTS RANDOM POLYNOM
[6]  
Feldheim O., DOUBLE ROOTS RANDOM
[7]   Conditional Expectations of Random Holomorphic Fields on Riemann Surfaces [J].
Feng, Renjie .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (14) :4406-4434
[8]  
Guionnet A., 2010, CAMBRIDGE STUDIES AD, V118
[9]   Correlations and Pairing between Zeros and Critical Points of Gaussian Random Polynomials [J].
Hanin, Boris .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (02) :381-421
[10]   Pairing of zeros and critical points for random meromorphic functions on riemann surfaces [J].
Hanin, Boris .
MATHEMATICAL RESEARCH LETTERS, 2015, 22 (01) :111-140