Multi-axis low-cycle creep/fatigue life prediction of high-pressure turbine blades based on a new critical plane damage parameter

被引:35
作者
Huo, Junzhou [1 ]
Sun, Debin [1 ]
Wu, Hanyang [1 ]
Wang, Weizheng [1 ]
Xue, Lin [1 ]
机构
[1] Dalian Univ Technol, Sch Mech Engn, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
New critical plane damage parameter; High-pressure turbine blades; Creep/fatigue interaction; Fatigue damage mechanism; Life prediction; THERMOMECHANICAL FATIGUE; FAILURE ANALYSIS; MODEL; CREEP; STEEL; ALLOY; SPECIMENS; CONSTANT; BEHAVIOR;
D O I
10.1016/j.engfailanal.2019.104159
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To study the multi-axis low-cycle creep/fatigue life of high-pressure turbine blades, a multi-axis low-cycle fatigue life prediction model based on a new critical plane damage parameter is proposed in this paper. Firstly, based on the thermal-structural coupling analysis of high-pressure turbine blades, the law of stress-strain distribution under the complex load of centrifugal load, temperature load and the aerodynamic load is obtained. Secondly, the multi-axis low-cycle fatigue life prediction model and the L-M equation are applied to predict the fatigue life and creep life of blade respectively. Furthermore, different experimental loading schemes are used to study the fatigue damage mechanism for the creep/fatigue interaction under high temperature condition, and a creep/fatigue interaction life prediction model is simultaneously provided. And finally, the experiment results demonstrate the rationality of the multi-axis low-cycle fatigue life prediction model and the creep/fatigue interaction should not be ignored.
引用
收藏
页数:18
相关论文
共 41 条
[1]   Temperature gradients in TMF specimens. Measurement and influence on TMF life [J].
Brendel, T. ;
Affeldt, E. ;
Hammer, J. ;
Rummel, C. .
INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (02) :234-240
[2]   Investigations of thermomechanical fatigue for optimization of design and production process solutions for gas-turbine engine parts [J].
Bychkov, N. G. ;
Lukash, V. P. ;
Nozhnitsky, Y. A. ;
Perchin, A. V. ;
Rekin, A. D. .
INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (02) :305-312
[3]   Power-exponent function model for low-cycle fatigue life prediction and its applications - Part II: Life prediction of turbine blades under creep-fatigue interaction [J].
Chen, Lijie ;
Liu, Yinghua ;
Xie, Liyang .
INTERNATIONAL JOURNAL OF FATIGUE, 2007, 29 (01) :10-19
[4]   HIGH-STRAIN MULTIAXIAL FATIGUE [J].
ELLYIN, F ;
VALAIRE, B .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1982, 104 (03) :165-173
[5]  
Feng D, 2012, China superalloys handbook
[6]   Reliability-based low-cycle fatigue damage analysis for turbine blade with thermo-structural interaction [J].
Gao, Haifeng ;
Fei, Chengwei ;
Bai, Guangchen ;
Ding, Lan .
AEROSPACE SCIENCE AND TECHNOLOGY, 2016, 49 :289-300
[7]   On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis [J].
Gates, Nicholas R. ;
Fatemi, Ali .
INTERNATIONAL JOURNAL OF FATIGUE, 2017, 100 :322-336
[8]   Innovative computational modeling of multiaxial fatigue analysis for notched components [J].
Ince, A. ;
Glinkab, G. .
INTERNATIONAL JOURNAL OF FATIGUE, 2016, 82 :134-145
[9]   Creep-Fatigue Life Prediction and Reliability Analysis of P91 Steel Based on Applied Mechanical Work Density [J].
Ji, D. M. ;
Shen, M. -H. H. ;
Wang, D. X. ;
Ren, J. X. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2015, 24 (01) :194-201
[10]   Thermodynamic analysis of flow field at the end of combustor simulator [J].
Kianpour, Ehsan ;
Sidik, Nor Azwadi Che ;
Bozorg, Mohsen Agha Seyyed Mirza .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 61 :389-396