A Common Origin: Signaling Similarities in the Regulation of the Circadian Clock and DNA Damage Responses

被引:34
作者
Uchida, Yoshimi [2 ]
Hirayama, Jun [1 ]
Nishina, Hiroshi [2 ]
机构
[1] Tokyo Med & Dent Univ, Med Res Inst, Med Top Track Program, Bunkyo Ku, Tokyo 1138510, Japan
[2] Tokyo Med & Dent Univ, Dept Dev & Regenerat Biol, Tokyo 1138510, Japan
关键词
circadian clock; DNA damage response; reduction-oxidation; zebrafish; GENE-EXPRESSION; CELL-CYCLE; TRANSCRIPTION FACTORS; PERIPHERAL-TISSUES; PROTEIN-KINASES; MOLECULAR CLOCK; CKI-EPSILON; LIGHT; ZEBRAFISH; MOUSE;
D O I
10.1248/bpb.33.535
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Circadian clocks are intrinsic, time-tracking systems that endow organisms with a survival advantage. Studies of animal models and human tumor samples have revealed that the disruption of circadian rhythms is an important endogenous factor that can contribute to mammalian cancer development. The core of the circadian clock mechanism is a cell-autonomous and self-sustained oscillator system mediated by a transcription/translation-based negative feedback loop that relies on positive and negative elements. Recent studies have implicated these core circadian components in the regulation of both the cell cycle and DNA damage responses (DDR). Indeed, the circadian feedback loop controls the timing of cell proliferation by regulating the expression of key cell cycle genes. Conversely, several intracellular signaling cascades and post-translational modifications that play important roles in the cell cycle and DDR are also essential for circadian clock regulation. Importantly, alteration of a cell's reduction oxidation (redox) state triggers the transduction of photic signals that regulate circadian clock gene transcription, suggesting that cellular responses to photo-oxidative stress may have been the evolutionary origin of the circadian clock. This review describes selected regulatory aspects of circadian machinery that are evidence of a molecular link between the circadian clock and DDR, focusing particularly on the signaling cascades involved in the light entrainment of the zebrafish circadian clock.
引用
收藏
页码:535 / 544
页数:10
相关论文
共 122 条
[1]   Post-translational modification of p53 protein in response to ionizing radiation analyzed by mass spectrometry [J].
Abraham, J ;
Kelly, J ;
Thibault, P ;
Benchimol, S .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 295 (04) :853-864
[2]  
Akashi M, 2000, GENE DEV, V14, P645
[3]   Control of intracellular dynamics of mammalian period proteins by casein kinase I ε (CKIε) and CKIδ in cultured cells [J].
Akashi, M ;
Tsuchiya, Y ;
Yoshino, T ;
Nishida, E .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (06) :1693-1703
[4]   mPer1 and mPer2 are essential for normal resetting of the circadian clock [J].
Albrecht, U ;
Zheng, BH ;
Larkin, D ;
Sun, ZS ;
Lee, CC .
JOURNAL OF BIOLOGICAL RHYTHMS, 2001, 16 (02) :100-104
[5]   Functional identification of the mouse circadian Clock gene by transgenic BAC rescue [J].
Antoch, MP ;
Song, EJ ;
Chang, AM ;
Vitaterna, MH ;
Zhao, YL ;
Wilsbacher, LD ;
Sangoram, AM ;
King, DP ;
Pinto, LH ;
Takahashi, JS .
CELL, 1997, 89 (04) :655-667
[6]   LIGHT REGULATES EXPRESSION OF A FOS-RELATED PROTEIN IN RAT SUPRACHIASMATIC NUCLEI [J].
ARONIN, N ;
SAGAR, SM ;
SHARP, FR ;
SCHWARTZ, WJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (15) :5959-5962
[7]   SIRT1 regulates circadian clock gene expression through PER2 deacetylation [J].
Asher, Gad ;
Gatfield, David ;
Stratmann, Markus ;
Reinke, Hans ;
Dibner, Charna ;
Kreppel, Florian ;
Mostoslavsky, Raul ;
Alt, Frederick W. ;
Schibler, Ueli .
CELL, 2008, 134 (02) :317-328
[8]   Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts [J].
Balsalobre, A ;
Marcacci, L ;
Schibler, U .
CURRENT BIOLOGY, 2000, 10 (20) :1291-1294
[9]   Resetting of circadian time peripheral tissues by glucocorticoid signaling [J].
Balsalobre, A ;
Brown, SA ;
Marcacci, L ;
Tronche, F ;
Kellendonk, C ;
Reichardt, HM ;
Schütz, G ;
Schibler, U .
SCIENCE, 2000, 289 (5488) :2344-2347
[10]   Rhythms of mammalian body temperature can sustain peripheral circadian clocks [J].
Brown, SA ;
Zumbrunn, G ;
Fleury-Olela, F ;
Preitner, N ;
Schibler, U .
CURRENT BIOLOGY, 2002, 12 (18) :1574-1583