SOBOLEV REGULARITY OF QUASICONFORMAL MAPPINGS ON DOMAINS

被引:4
作者
Prats, Marti [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Catalonia, Spain
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2019年 / 138卷 / 02期
基金
欧洲研究理事会;
关键词
D O I
10.1007/s11854-019-0031-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a Lipschitz domain Omega and a measurable function mu supported in (Omega) over bar with parallel to mu parallel to(L infinity) < 1. Then the derivatives of a quasiconformal solution of the Beltrami equation partial derivative f = mu partial derivative f inherit the Sobolev regularity W-n,W-p(Omega) of the Beltrami coefficient mu as long as Omega is regular enough. The condition obtained is that the outward unit normal vector N of the boundary of the domain is in the trace space, that is, N is an element of B-p,p(n-1/p)(partial derivative Omega).
引用
收藏
页码:513 / 562
页数:50
相关论文
共 22 条
[1]  
ADAMS R. A., 2003, SOBOLEV SPACES
[2]   AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS [J].
ASTALA, K .
ACTA MATHEMATICA, 1994, 173 (01) :37-60
[3]   Beltrami operators in the plane [J].
Astala, K ;
Iwaniec, T ;
Saksman, E .
DUKE MATHEMATICAL JOURNAL, 2001, 107 (01) :27-56
[4]  
Astala K., 2009, ELLIPTIC PARTIAL DIF
[5]   A SHARP REGULARITY RESULT OF SOLUTIONS OF A TRANSMISSION PROBLEM [J].
Citti, Giovanna ;
Ferrari, Fausto .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (02) :615-620
[6]   BELTRAMI EQUATIONS WITH COEFFICIENT IN THE SOBOLEV SPACE W1,p [J].
Clop, A. ;
Faraco, D. ;
Mareu, J. ;
Orobitg, J. ;
Zhong, X. .
PUBLICACIONS MATEMATIQUES, 2009, 53 (01) :197-230
[7]   STABILITY OF CALDERON'S INVERSE CONDUCTIVITY PROBLEM IN THE PLANE FOR DISCONTINUOUS CONDUCTIVITIES [J].
Clop, Albert ;
Faraco, Daniel ;
Ruiz, Alberto .
INVERSE PROBLEMS AND IMAGING, 2010, 4 (01) :49-91
[8]   Beltrami Equation with Coefficient in Sobolev and Besov Spaces [J].
Cruz, Victor ;
Mateu, Joan ;
Orobitg, Joan .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (06) :1217-1235
[9]   Smoothness of the Beurling transform in Lipschitz domains [J].
Cruz, Victor ;
Tolsa, Xavier .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (10) :4423-4457
[10]  
Evans L.C., 1996, Partial Differential Equations