Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems

被引:113
作者
Samanta, Tapas [1 ]
Lepkowski, Daniel L. [1 ]
Saleheen, Ahmad Us [1 ]
Shankar, Alok [1 ]
Prestigiacomo, Joseph [1 ]
Dubenko, Igor [2 ]
Quetz, Abdiel [2 ]
Oswald, Iain W. H. [3 ]
McCandless, Gregory T. [3 ]
Chan, Julia Y. [3 ]
Adams, Philip W. [1 ]
Young, David P. [1 ]
Ali, Naushad [2 ]
Stadler, Shane [1 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA
[3] Univ Texas Dallas, Dept Chem, Richardson, TX 75080 USA
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 02期
基金
美国国家科学基金会;
关键词
MAGNETOSTRUCTURAL TRANSITION; MARTENSITIC-TRANSFORMATION; GIANT;
D O I
10.1103/PhysRevB.91.020401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A remarkable decrease of the structural transition temperature of MnNiSi from 1200 to < 300 K by chemically alloying it with MnFeGe results in a coupling of the magnetic and structural transitions, leading to a large magnetocaloric effect near room temperature. Application of relatively low hydrostatic pressures (similar to 2.4 kbar) lead to an extraordinary enhancement of the isothermal entropy change from -Delta S = 44 to 89 J/kgK at ambient and 2.4 kbar applied pressures, respectively, for a field change of Delta B = 5 T, and is associated with a large relative volume change of about 7% with P = 2.4 kbar.
引用
收藏
页数:5
相关论文
共 23 条
[1]   PRESSURE AND TEMPERATURE-DEPENDENCE OF ELECTRICAL-RESISTIVITY OF PB AND SN FROM 1-300-5 AND 0-10 GPA-USE AS CONTINUOUS RESISTIVE PRESSURE MONITOR ACCURATE OVER WIDE TEMPERATURE-RANGE - SUPERCONDUCTIVITY UNDER PRESSURE IN PB, SN, AND IN [J].
EILING, A ;
SCHILLING, JS .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1981, 11 (03) :623-639
[2]   Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides -: art. no. 104416 [J].
Fujita, A ;
Fujieda, S ;
Hasegawa, Y ;
Fukamichi, K .
PHYSICAL REVIEW B, 2003, 67 (10)
[3]   Pressure-induced colossal magnetocaloric effect in MnAs [J].
Gama, S ;
Coelho, AA ;
de Campos, A ;
Carvalho, AMG ;
Gandra, FCG ;
von Ranke, PJ ;
de Oliveira, NA .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)
[4]   On the nature of the magnetocaloric effect of the first-order magnetostructural transition [J].
Gschneidner, K. A., Jr. ;
Mudryk, Y. ;
Pecharsky, V. K. .
SCRIPTA MATERIALIA, 2012, 67 (06) :572-577
[5]   Recent developments in magnetocaloric materials [J].
Gschneidner, KA ;
Pecharsky, VK ;
Tsokol, AO .
REPORTS ON PROGRESS IN PHYSICS, 2005, 68 (06) :1479-1539
[6]   Magnetic-field-induced shape recovery by reverse phase transformation [J].
Kainuma, R ;
Imano, Y ;
Ito, W ;
Sutou, Y ;
Morito, H ;
Okamoto, S ;
Kitakami, O ;
Oikawa, K ;
Fujita, A ;
Kanomata, T ;
Ishida, K .
NATURE, 2006, 439 (7079) :957-960
[7]   The TiNiSi family of compounds: Structure and bonding [J].
Landrum, GA ;
Hoffmann, R ;
Evers, J ;
Boysen, H .
INORGANIC CHEMISTRY, 1998, 37 (22) :5754-5763
[8]   Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1-xCoGe alloys [J].
Liu, E. K. ;
Zhu, W. ;
Feng, L. ;
Chen, J. L. ;
Wang, W. H. ;
Wu, G. H. ;
Liu, H. Y. ;
Meng, F. B. ;
Luo, H. Z. ;
Li, Y. X. .
EPL, 2010, 91 (01)
[9]   Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets [J].
Liu, Enke ;
Wang, Wenhong ;
Feng, Lin ;
Zhu, Wei ;
Li, Guijiang ;
Chen, Jinglan ;
Zhang, Hongwei ;
Wu, Guangheng ;
Jiang, Chengbao ;
Xu, Huibin ;
de Boer, Frank .
NATURE COMMUNICATIONS, 2012, 3
[10]  
Liu J, 2012, NAT MATER, V11, P620, DOI [10.1038/nmat3334, 10.1038/NMAT3334]