Deep Learning in Upper Gastrointestinal Disorders: Status and Future Perspectives

被引:14
作者
Bang, Chang Seok [1 ]
机构
[1] Hallym Univ, Coll Med, Dept Internal Med, 1 Hallymdaehak Gil, Chunchon 24252, South Korea
关键词
Artificial intelligence; Neural networks; computer; Deep learning; Gastroenterology; Endoscopy;
D O I
10.4166/kjg.2020.75.3.120
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Artificial intelligence using deep learning has been applied to gastrointestinal disorders for the detection, classification, and delineation of various lesion images. With the accumulation of enormous medical records, the evolution of computation power with graphic processing units, and the widespread use of open-source libraries in large-scale machine learning processes, medical artificial intelligence is overcoming its traditional limitations. This paper explains the basic concepts of deep learning model establishment and summarizes previous studies on upper gastrointestinal disorders. The limitations and perspectives on future development are also discussed.
引用
收藏
页码:120 / 131
页数:12
相关论文
共 44 条
[1]   Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video) [J].
Cai, Shi-Lun ;
Li, Bing ;
Tan, Wei-Min ;
Niu, Xue-Jing ;
Yu, Hon-Ho ;
Yao, Li-Qing ;
Zhou, Ping-Hong ;
Yan, Bo ;
Zhong, Yun-Shi .
GASTROINTESTINAL ENDOSCOPY, 2019, 90 (05) :745-+
[2]   Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and without artificial intelligence: a prospective, single-blind, 3-parallel-group, randomized, single-center trial [J].
Chen, Di ;
Wu, Lianlian ;
Li, Yanxia ;
Zhang, Jun ;
Liu, Jun ;
Huang, Li ;
Jiang, Xiaoda ;
Huang, Xu ;
Mu, Ganggang ;
Hu, Shan ;
Hu, Xiao ;
Gong, Dexin ;
He, Xinqi ;
Yu, Honggang .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (02) :332-+
[3]   Artificial Intelligence for the Determination of a Management Strategy for Diminutive Colorectal Polyps: Hype, Hope, or Help [J].
Cho, Bum-Joo ;
Bang, Chang Seok .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2020, 115 (01) :70-72
[4]   Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network [J].
Cho, Bum-Joo ;
Bang, Chang Seok ;
Park, Se Woo ;
Yang, Young Joo ;
Seo, Seung In ;
Lim, Hyun ;
Shin, Woon Geon ;
Hong, Ji Taek ;
Yoo, Yong Tak ;
Hong, Seok Hwan ;
Choi, Jae Ho ;
Lee, Jae Jun ;
Baik, Gwang Ho .
ENDOSCOPY, 2019, 51 (12) :1121-1129
[5]   Artificial neural network as a predictive instrument in patients with acute nonvariceal upper gastrointestinal hemorrhage [J].
Das, Ananya ;
Ben-Menachem, Tamir ;
Farooq, Farees T. ;
Cooper, Gregory S. ;
Chak, Amitabh ;
Sivak, Michael V., Jr. ;
Wong, Richard C. K. .
GASTROENTEROLOGY, 2008, 134 (01) :65-74
[6]  
de Groof AJ., GASTROENTEROLOGY
[7]   The Argos project: The development of a computer-aided detection system to improve detection of Barrett's neoplasia on white light endoscopy [J].
de Groof, Jeroen ;
van der Sommen, Fons ;
van der Putten, Joost ;
Struyvenberg, Maarten R. ;
Zinger, Sveta ;
Curvers, Muter L. ;
Pech, Oliver ;
Meining, Alexander ;
Neuhaus, Horst ;
Bisschops, Raf ;
Schoon, Erik J. ;
de With, Peter H. ;
Bergman, Jacques J. .
UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2019, 7 (04) :538-547
[8]  
Ebigbo A., 2019, GUT
[9]   A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology [J].
Ebigbo, Alanna ;
Palm, Christoph ;
Probst, Andreas ;
Mendel, Robert ;
Manzeneder, Johannes ;
Prinz, Friederike ;
de Souza, Luis A. ;
Papa, Joao P. ;
Siersema, Peter ;
Messmann, Helmut .
ENDOSCOPY INTERNATIONAL OPEN, 2019, 7 (12) :E1616-E1623
[10]  
Ghatwary N., INT J COMPUT