Fast and Scalable Polynomial Kernels via Explicit Feature Maps

被引:232
作者
Ninh Pham [1 ]
Pagh, Rasmus [1 ]
机构
[1] IT Univ Copenhagen, Copenhagen, Denmark
来源
19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13) | 2013年
基金
新加坡国家研究基金会;
关键词
polynomial kernel; SVM; tensor product; Count Sketch; FFT; NYSTROM METHOD;
D O I
10.1145/2487575.2487591
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Approximation of non-linear kernels using random feature mapping has been successfully employed in large-scale data analysis applications, accelerating the training of kernel machines. While previous random feature mappings run in O(ndD) time for n training samples in d-dimensional space and D random feature maps, we propose a novel randomized tensor product technique, called Tensor Sketching, for approximating any polynomial kernel in O(n(d + D log D)) time. Also, we introduce both absolute and relative error bounds for our approximation to guarantee the reliability of our estimation algorithm. Empirically, Tensor Sketching achieves higher accuracy and often runs orders of magnitude faster than the state-of-the-art approach for large-scale real-world datasets.
引用
收藏
页码:239 / 247
页数:9
相关论文
共 24 条
[1]  
[Anonymous], 2000, P 17 INT C MACHINE L
[2]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[3]  
Charikar M, 2002, LECT NOTES COMPUT SC, V2380, P693
[4]  
Chitta R., 2011, P 17 ACM SIGKDD INT, P895, DOI [DOI 10.1145/2020408.2020558, 10.1145/2020408.2020558]
[5]   Efficient Kernel Clustering Using Random Fourier Features [J].
Chitta, Radha ;
Jin, Rong ;
Jain, Anil K. .
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, :161-170
[6]  
Dai JH, 2012, TI-2011: PROCEEDINGS OF THE 12TH WORLD CONFERENCE ON TITANIUM, VOL I, P485
[7]  
Drineas P, 2005, J MACH LEARN RES, V6, P2153
[8]  
Fan RE, 2008, J MACH LEARN RES, V9, P1871
[9]   Efficient SVM training using low-rank kernel representations [J].
Fine, S ;
Scheinberg, K .
JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) :243-264
[10]  
Frank A., 2010, UCI machine learning repository, V213