Single-photon test of hyper-complex quantum theories using a metamaterial

被引:33
作者
Procopio, Lorenzo M. [1 ]
Rozema, Lee A. [1 ]
Wong, Zi Jing [2 ,3 ]
Hamel, Deny R. [1 ,4 ]
O'Brien, Kevin [2 ,3 ]
Zhang, Xiang [2 ,3 ]
Dakic, Borivoje [1 ,5 ]
Walther, Philip [1 ]
机构
[1] Univ Vienna, Vienna Ctr Quantum Sci & Technol, Boltzmanngasse 5, A-1090 Vienna, Austria
[2] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] Univ Moncton, Dept Phys & Astron, Moncton, NB E1A 3E9, Canada
[5] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Boltzmanngasse 3, A-1090 Vienna, Austria
基金
奥地利科学基金会; 加拿大自然科学与工程研究理事会;
关键词
ENTANGLED PHOTONS; MECHANICS; INDEX; VIOLATION; FOUNDATIONS; PROPAGATION; INEQUALITY; DYNAMICS;
D O I
10.1038/ncomms15044
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.
引用
收藏
页数:9
相关论文
共 54 条
[11]  
Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[12]  
Bialynicki-Birula I., 1984, ANN PHYS, V100, P62
[13]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[14]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[15]   Experimental status of quaternionic quantum mechanics [J].
Brumby, SP ;
Joshi, GC .
CHAOS SOLITONS & FRACTALS, 1996, 7 (05) :747-752
[16]   Detection-Loophole-Free Test of Quantum Nonlocality, and Applications [J].
Christensen, B. G. ;
McCusker, K. T. ;
Altepeter, J. B. ;
Calkins, B. ;
Gerrits, T. ;
Lita, A. E. ;
Miller, A. ;
Shalm, L. K. ;
Zhang, Y. ;
Nam, S. W. ;
Brunner, N. ;
Lim, C. C. W. ;
Gisin, N. ;
Kwiat, P. G. .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)
[17]   Density cubes and higher-order interference theories [J].
Dakic, B. ;
Paterek, T. ;
Brukner, C. .
NEW JOURNAL OF PHYSICS, 2014, 16
[18]   Negative-index metamaterial at 780 nm wavelength [J].
Dolling, G. ;
Wegener, M. ;
Soukoulis, C. M. ;
Linden, S. .
OPTICS LETTERS, 2007, 32 (01) :53-55
[19]  
Durr D, 2009, BOHMIAN MECH
[20]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780