The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites

被引:190
作者
Huda, M. S.
Drzal, L. T.
Mohanty, A. K.
Misra, M.
机构
[1] Michigan State Univ, Composite Mat & Struct Ctr, E Lansing, MI 48824 USA
[2] Michigan State Univ, Sch Packaging, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
fibers; thermoplastic resin; thermomechanical; extrusion;
D O I
10.1016/j.compositesb.2006.06.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper evaluates the effect of the addition of silane treated- and untreated- talc as the fillers on the mechanical and physico-mechanical properties of poly(lactic acid) (PLA)/recycled newspaper cellulose fibers (RNCF)/talc hybrid composites. For this purpose, 10 wt% of a talc with and without silane treatment were incorporated into PLA/RNCF (60 wt%/30 wt%) composites that were processed by a micro-compounding and molding system. PLA is utilized is a bio-based polymer that made from dextrose, a derivative of corn. Talc is also a natural product. The RNCF and talc hybrid reinforcements of PLA polymer matrix were targeted to design and engineer biobased composites of balanced properties with added advantages of cost benefits besides the eco-friendliness of all the components in the composites. In this work, the flexural and impact properties of PLA/RNCF composites improved significantly with the addition of 10 wt% talc. The flexural and impact strength of these hybrid composites were found to be significantly higher than that made from either PLA/RNCF. The hybrid composites showed improved properties such as flexural strength of 132 MPa and flexural modulus of 15.3 GPa, while the unhybridized PLA/RNCF based composites exhibited flexural strength and modulus values of 77 MPa and 6.7 GPa, respectively. The DMA storage modulus and the loss modulus of the PLA/RNCF hybrid composites were found to increase, whereas the mechanical loss factor (tan delta) was found to decrease. The storage modulus increased with the addition of talc, because the talc generated a stiffer interface in the polymer matrix. Differential scanning calorimetry (DSC) thermograms of neat PLA and of the hybrid composites showed nearly the similar glass transition temperatures and melting temperatures. Scanning electron microscopy (SEM) micrographs of the fracture surface of Notched Izod impact specimen of 10 wt% talc filled PLA/RNCF composite showed well filler particle dispersion in the matrix and no large aggregates are present. The comparison data of mechanical properties among samples filled with silane-treated- and untreated- talc fillers showed that the hybrid composites filled with silane treated talc displayed the better mechanical prosperities relative to the other hybrid composites. Talc-filled RNCF-reinforced polypropylene (PP) hybrid composites were also made in the same way that of PLA hybrid composites for a comparison. The PLA hybrid bio-based composites showed much improvement in mechanical properties as compared to PP-based hybrid counterparts. This suggests that these PLA hybrid bio-based composites have a potential to replace glass fibers in many applications that do not require very high load bearing capabilities and these recycled newspaper cellulose fibers could be a good candidate reinforcement fiber of high performance hybrid biocomposites. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:367 / 379
页数:13
相关论文
共 39 条
[1]  
[Anonymous], SHORT FIBER REINFORC
[2]  
Billmeyer F. W., 1984, TXB POLYM SCI
[3]   Scratch resistance of mineral-filled polypropylene materials [J].
Chu, J ;
Xiang, C ;
Sue, HJ ;
Hollis, RD .
POLYMER ENGINEERING AND SCIENCE, 2000, 40 (04) :944-955
[4]   Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics [J].
Corbière-Nicollier, T ;
Gfeller-Laban, B ;
Lundquist, L ;
Leterrier, Y ;
Månson, JAE ;
Jolliet, O .
RESOURCES CONSERVATION AND RECYCLING, 2001, 33 (04) :267-287
[5]   Structure and mechanical properties of talc-filled blends of polypropylene and styrenic block copolymers [J].
Denac, M ;
Musil, V ;
Smit, I .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2004, 42 (07) :1255-1264
[6]  
Dorgan JR, 2001, MACROMOL SYMP, V175, P55, DOI 10.1002/1521-3900(200110)175:1<55::AID-MASY55>3.0.CO
[7]  
2-K
[8]  
ENGLISH BW, 1995, FACTORS AFFECT APPL, P189
[9]   Dwarf cavendish as a source of natural fibers in poly (propylene)-based composites [J].
Faria, H ;
Cordeiro, N ;
Belgacem, MN ;
Dufresne, A .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2006, 291 (01) :16-26
[10]   POLYPROPYLENE BASED POLYMER BLENDS - FIELDS OF APPLICATION AND NEW TRENDS [J].
GALLI, P ;
DANESI, S ;
SIMONAZZI, T .
POLYMER ENGINEERING AND SCIENCE, 1984, 24 (08) :544-554