Renormalised solutions of nonlinear parabolic problems with L1 data:: existence and uniqueness

被引:211
作者
Blanchard, D [1 ]
Murat, F
机构
[1] Univ Rouen, CNRS, URA 1378, F-76821 Mont St Aignan, France
[2] Univ Paris 06, Anal Numer Lab, CNRS, URA 189, F-75252 Paris 05, France
关键词
D O I
10.1017/S0308210500026986
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence and uniqueness of a renormalised solution of the nonlinear problem [GRAPHICS] where the data f and u(0) belong to L-1(Omega x (0, T)) and L-1(Omega), and where the function a:(0, T) x Omega x R-N --> R-N is monotone (but not necessarily strictly monotone) and defines a bounded coercive continuous operator from the space L-p(0, T; W-0(1,p)(Omega)) into its dual space. The renormalised solution is an element of C-0([0, T]; L-1(Omega)) such that its truncates T-K(u) belong to L-p(0, T; W-0(1,p)(Omega)) with [GRAPHICS] this solution satisfies the equation formally obtained jy using in the equation the test function S(u)phi, where phi belongs to c(0)(infinity)(Q) and where S belongs to C-infinity(R) with S' is an element of C-0(infinity)(R).
引用
收藏
页码:1137 / 1152
页数:16
相关论文
共 17 条
[1]  
ANDREU F, IN PRESS EXISTENCE U
[2]  
BENILAN P, 1997, IN PRESS C R ACAD SC, V324
[3]  
Benilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
[4]   TRUNCATIONS AND MONOTONICITY METHODS FOR PARABOLIC EQUATIONS [J].
BLANCHARD, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (10) :725-743
[5]  
BOCCARDO L, 1992, COMMUN PART DIFF EQ, V17, P641
[6]   NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA [J].
BOCCARDO, L ;
GALLOUET, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) :149-169
[7]   EXISTENCE RESULTS FOR SOME QUASILINEAR PARABOLIC EQUATIONS [J].
BOCCARDO, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (04) :373-392
[8]   EXISTENCE AND REGULARITY OF RENORMALIZED SOLUTIONS FOR SOME ELLIPTIC PROBLEMS INVOLVING DERIVATIVES OF NONLINEAR TERMS [J].
BOCCARDO, L ;
GIACHETTI, D ;
DIAZ, JI ;
MURAT, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 106 (02) :215-237
[9]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[10]  
Leray J., 1965, Bull. Soc. Math. Fr, V93, P97, DOI [10.24033/bsmf.1617, DOI 10.24033/BSMF.1617]