Macroscopic erosion of divertor and first wall armour in future tokamaks

被引:31
作者
Würz, H
Bazylev, B
Landman, I
Pestchanyi, S
Safronov, V
机构
[1] Forschungszentrum Karlsruhe, IHM, D-76021 Karlsruhe, Germany
[2] Luikov Inst Heat & Mass Transfer, Minsk 220072, BELARUS
[3] Troitsk Inst Innovat & Fus Res, Troitsk 142190, Russia
关键词
D O I
10.1016/S0022-3115(02)00938-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:60 / 68
页数:9
相关论文
共 33 条
[1]  
[Anonymous], 1999, FLUID DYNAMICS INTER
[2]   EXPERIMENTAL AND ANALYTICAL RESULTS OF CARBON BASED MATERIALS UNDER THERMAL-SHOCK HEAT LOADS FOR FUSION APPLICATION [J].
ARAKI, M ;
AKIBA, M ;
SEKI, M ;
DAIRAKU, M ;
ISE, H ;
YAMAZAKI, S ;
TANAKA, S ;
YOKOYAMA, K .
FUSION ENGINEERING AND DESIGN, 1992, 19 (01) :101-109
[3]   Hot electron target interaction experiments at the GOL-3 facility [J].
Astrelin, VT ;
Burdakov, AV ;
Chebotaev, PZ ;
Filippov, VV ;
Koidan, VS ;
Mekler, KI ;
Melnikov, PI ;
Postupaev, VV ;
Rovenskikh, AF ;
Shcheglov, MA ;
Würz, H .
NUCLEAR FUSION, 1997, 37 (11) :1541-1558
[4]  
Azzopardi BJ, 1997, INT J MULTIPHAS FLOW, V23, P1
[5]   Carbon fiber composites application in ITER plasma facing components [J].
Barabash, V ;
Akiba, M ;
Bonal, JP ;
Federici, G ;
Matera, R ;
Nakamura, K ;
Pacher, HD ;
Rodig, M ;
Vieider, G ;
Wu, CH .
JOURNAL OF NUCLEAR MATERIALS, 1998, 258 :149-159
[6]   The investigation of structure, chemical composition, hydrogen isotope trapping and release processes in deposition layers on surfaces exposed to DIII-D divertor plasma [J].
Buzhinskij, OI ;
Opimach, IV ;
Barsuk, VA ;
Arkhipov, II ;
West, WP ;
Whyte, D ;
Wong, CPC ;
Wampler, WR .
JOURNAL OF NUCLEAR MATERIALS, 1999, 266 :793-797
[7]   Behaviour of silicon-doped CFC limiter under high heat load in TEXTOR-94 [J].
Huber, A ;
Philipps, V ;
Hirai, T ;
Kirschner, A ;
Lehnen, M ;
Pospieszczyk, A ;
Schweer, B ;
Sergienko, G .
PHYSICA SCRIPTA, 2001, T91 :61-64
[8]  
HUBER A, COMMUNICATION
[9]   Overview of the divertor design and its integration into RTO/RC-ITER [J].
Janeschitz, G ;
Tivey, R ;
Antipenkov, A ;
Barabash, V ;
Chiocchio, S ;
Federici, G ;
Heidl, H ;
Ibbott, C ;
Martin, E .
FUSION ENGINEERING AND DESIGN, 2000, 49-50 :107-117
[10]   Plasma-wall interaction issues in ITER [J].
Janeschitz, G .
JOURNAL OF NUCLEAR MATERIALS, 2001, 290 :1-11