A self-stabilizing distributed algorithm for the local (1,|Ni|)-critical section problem

被引:2
作者
Kamei, Sayaka [1 ]
Kakugawa, Hirotsugu [2 ]
机构
[1] Hiroshima Univ, Grad Sch Engn, Dept Informat Engn, 1-4-1 Kagamiyama, Higashihiroshima 7398527, Japan
[2] Ryukoku Univ, Dept Appl Math & Informat, Kyoto, Japan
基金
日本科学技术振兴机构;
关键词
disjoint minimal dominating sets; domatic partition; mutual exclusion; mutual inclusion; self-stabilization; MUTUAL EXCLUSION; UNIFORM;
D O I
10.1002/cpe.5628
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the local (1,|N-i|)-critical section (CS) problem where N-i is the set of neighboring processes for each process P-i. It dynamically maintains two disjoint dominating sets and is one of the generalizations of the mutual exclusion problem. The problem is one of controlling the system in such a way that, for each process, among its neighbors and itself, at least one process must be in the CS and at least one process must be out of the CS at each time. That is, in the system G=(V,E), there are always two disjoint dominating sets A(1)(subset of V) and A(2)(=V\A(1)) and each process alternates between its rule A(1) and A(2) infinitely. It is useful for sleep scheduling or cluster head scheduling in sensor networks. In this paper, first, we show the necessary and sufficient conditions to solve the problem without any deadlock detection. To discuss the conditions, we consider an inefficient (costly) self-stabilizing algorithm for the local (1,|N-i|)-CS problem. After that, an efficient self-stabilizing algorithm for the local (1,|N-i|)-CS problem is proposed under an additional assumption that the graph does not have a special matching, which we call unpreventable colorable maximal matching. The convergence time of the proposed algorithm is O(n) rounds under the weakly fair distributed daemon.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] A self-stabilizing algorithm for bridge finding
    Karaata, MH
    Chaudhuri, P
    [J]. DISTRIBUTED COMPUTING, 1999, 12 (01) : 47 - 53
  • [22] A SELF-STABILIZING ALGORITHM FOR MAXIMAL MATCHING
    HSU, SC
    HUANG, ST
    [J]. INFORMATION PROCESSING LETTERS, 1992, 43 (02) : 77 - 81
  • [23] Robust self-stabilizing clustering algorithm
    Johnen, Colette
    Nguyen, Le Huy
    [J]. PRINCIPLES OF DISTRIBUTED SYSTEMS, PROCEEDINGS, 2006, 4305 : 410 - 424
  • [24] A self-stabilizing algorithm for strong fairness
    M. H. Karaata
    P. Chaudhuri
    [J]. Computing, 1998, 60 : 217 - 228
  • [25] An assertional correctness proof of a self-stabilizing l-exclusion algorithm
    Besta, Milos
    Stomp, Frank
    [J]. ICECCS 2006: 11TH IEEE INTERNATIONAL CONFERENCE ON ENGINEERING OF COMPLEX COMPUTER SYSTEMS, PROCEEDINGS, 2006, : 199 - +
  • [26] A token based self-stabilizing mutual exclusion algorithm
    Chaudhuri, P
    Edward, T
    [J]. PDPTA'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS 1-4, 2003, : 1454 - 1459
  • [27] A highly safe self-stabilizing mutual exclusion algorithm
    Yen, IL
    [J]. INFORMATION PROCESSING LETTERS, 1996, 57 (06) : 301 - 305
  • [28] An asynchronous message-passing distributed algorithm for the global critical section problem
    Kamei, Sayaka
    Kakugawa, Hirotsugu
    [J]. 2017 FIFTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2017, : 414 - 419
  • [29] Random distributed self-stabilizing structures maintenance
    Bernard, T
    Bui, A
    Flauzac, O
    [J]. ADVANCED DISTRUBUTED SYSTEMS, 2004, 3061 : 231 - 240
  • [30] A new self-stabilizing k-out-of-l exclusion algorithm on rings
    Datta, AK
    Hadid, R
    Villain, V
    [J]. SELF-STABILIZING SYSTEMS, PROCEEDINGS, 2003, 2704 : 113 - 128