Closure under union and composition of iterated rational transductions

被引:4
|
作者
Simplot, D [1 ]
Terlutte, A [1 ]
机构
[1] Univ Lille 1, LIFL, URA 369 CNRS, F-59655 Villeneuve Dascq, France
来源
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS | 2000年 / 34卷 / 03期
关键词
rational transductions; rational functions; iteration of transductions; context-sensitive languages;
D O I
10.1051/ita:2000114
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We proceed our work on iterated transductions by studying the closure under union and composition of some classes of iterated functions. We analyze this closure for the classes of length-preserving rational functions, length-preserving subsequential functions and length-preserving sequential functions with terminal states. All the classes we obtain are equal. We also study the connection with deterministic context-sensitive languages. AMS Subject Classification. 68Q45; 68Q42, 68Q70.
引用
收藏
页码:183 / 212
页数:30
相关论文
共 4 条
  • [1] On fixed points of rational transductions
    Halava, Vesa
    Harju, Tero
    Sahla, Esa
    THEORETICAL COMPUTER SCIENCE, 2018, 732 : 85 - 88
  • [2] The uniform closure of non-dense rational spaces on the unit interval
    Erdélyi, T
    JOURNAL OF APPROXIMATION THEORY, 2004, 131 (02) : 149 - 156
  • [3] On the Arithmetic Behavior of Liouville Numbers Under Rational Maps
    Chaves, Ana Paula
    Marques, Diego
    Trojovsky, Pavel
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (04): : 803 - 813
  • [4] On the Arithmetic Behavior of Liouville Numbers Under Rational Maps
    Ana Paula Chaves
    Diego Marques
    Pavel Trojovský
    Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 803 - 813