Composition operators on Lizorkin-Triebel spaces

被引:31
作者
Bourdaud, Gerard [1 ]
Moussai, Madani [2 ]
Sickel, Winfried [3 ]
机构
[1] Inst Math Jussieu, Equipe Anal Fonct, F-75013 Paris, France
[2] Univ MSila, Dept Math, LMPA, Msila 28000, Algeria
[3] FSU Jena, Math Inst, D-07743 Jena, Germany
关键词
Composition of functions; Composition operator; Lizorkin-Triebel spaces; Slobodeckij spaces; Bessel potential spaces; Functions of bounded variation; Wiener classes; Optimal inequalities; BOUNDED P-VARIATION; SOBOLEV SPACES; SUPERPOSITION OPERATORS; FUNCTIONAL-CALCULUS; SYMBOLIC-CALCULUS; BESOV ALGEBRAS;
D O I
10.1016/j.jfa.2010.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of the composition operator Tf(g) := f o g on Lizorkin-Triebel spaces F(p,q)(s)(R). In case s > 1 + (1/p), 1 < p < infinity, and 1 <= q <= infinity we will prove the following; the operator T(f) takes Fq (it) to itself if and only if f(0) = 0 and f belongs locally to fq(111). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1098 / 1128
页数:31
相关论文
共 37 条
[1]   BMO AND SMOOTH TRUNCATION IN SOBOLEV SPACES [J].
ADAMS, DR ;
FRAZIER, M .
STUDIA MATHEMATICA, 1988, 89 (03) :241-260
[2]   COMPOSITION OPERATORS ON POTENTIAL SPACES [J].
ADAMS, DR ;
FRAZIER, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (01) :155-165
[3]  
[Anonymous], J MATH PHYS
[4]  
[Anonymous], 1986, J FAC SCI U TOKYO IA
[5]  
[Anonymous], 2010, Theory of Function Spaces
[6]  
Bergh G., 1976, INTERPOLATION THEORY
[7]   FUNCTIONAL-CALCULUS IN SOBOLEV SPACES [J].
BOURDAUD, G .
INVENTIONES MATHEMATICAE, 1991, 104 (02) :435-446
[8]   A composition property in the space Hs (II). [J].
Bourdaud, G .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (04) :243-246
[9]  
BOURDAUD G, 1992, CR ACAD SCI I-MATH, V314, P187
[10]   Superposition operators and functions of bounded p-variation II [J].
Bourdaud, G ;
Lanza de Cristoforis, M ;
Sickel, W .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (03) :483-517