Perturbations of orthogonal polynomials with periodic recursion coefficients

被引:51
作者
Damanik, David [1 ]
Killip, Rowan [2 ]
Simon, Barry [3 ]
机构
[1] Rice Univ, Dept Math, Houston, TX 77005 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] CALTECH, Pasadena, CA 91125 USA
关键词
INVERSE SPECTRAL-ANALYSIS; C-ASTERISK-ALGEBRAS; MATRIX POLYNOMIALS; SUM-RULES; SCHRODINGER-OPERATORS; RELATIVE ASYMPTOTICS; JACOBI MATRICES; PARTIAL INFORMATION; RAKHMANOVS THEOREM; STURM-LIOUVILLE;
D O I
10.4007/annals.2010.171.1931
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The results of Denisov-Rakhmanov, Szego-Shohat-Nevai, and Killip-Simon are extended from asymptotically constant orthogonal polynomials on the real line (OPRL) and unit circle (OPUC) to asymptotically periodic OPRL and OPUC. The key tool is a characterization of the isospectral torus that is well adapted to the study of perturbations.
引用
收藏
页码:1931 / 2010
页数:80
相关论文
共 121 条
[1]  
AHEIZER NI, 1962, TRANSL MATH MONOGR, V2
[2]   Some asymptotic properties for orthogonal polynomials with respect to varying measures [J].
Alfaro, MP ;
Hernández, MB ;
Montaner, JM ;
Varona, JL .
JOURNAL OF APPROXIMATION THEORY, 2005, 135 (01) :22-34
[3]   INVERSE SPECTRAL PROBLEM FOR DIFFERENTIAL-OPERATORS WITH RATIONAL SCATTERING MATRIX FUNCTIONS [J].
ALPAY, D ;
GOHBERG, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 118 (01) :1-19
[4]   INVERSE SPECTRAL PROBLEMS FOR DIFFERENCE-OPERATORS WITH RATIONAL SCATTERING MATRIX FUNCTION [J].
ALPAY, D ;
GOHBERG, I .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 20 (02) :125-170
[5]  
[Anonymous], ARXIV07061101
[6]  
[Anonymous], 1989, Acta Sci. Math. (Szeged)
[7]  
[Anonymous], 2001, Margarita Mathematica en memoria de Jose Javier Guadalupe
[8]  
ANTONY AJ, 1992, P INDIAN AS-MATH SCI, V102, P175
[9]  
APTEKAREV AI, 1984, MATH USSR SB, V49, P325
[10]   ALMOST PERIODIC SCHRODINGER-OPERATORS .1. LIMIT PERIODIC POTENTIALS [J].
AVRON, J ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 82 (01) :101-120