Manifolds of low cohomogeneity and positive Ricci curvature

被引:5
作者
Bechtluft-Sachs, S. [1 ]
Wraith, D. J. [1 ]
机构
[1] Natl Univ Ireland Maynooth, Dept Math, Maynooth, Kildare, Ireland
关键词
Asystatic actions; Cohomogeneity; Group actions; Positive Ricci curvature; Three-manifolds; RIEMANNIAN-MANIFOLDS; EVEN DIMENSION; CONNECTED-SUMS; SPHERES;
D O I
10.1016/j.difgeo.2009.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify compact asystatic G-manifolds with fixed point singular orbits in cohomogeneity <= 3 up to equivariant diffeomorphism. From this we derive existence results for invariant metrics of positive Ricci curvature on such objects. We also develop non-existence results for invariant metrics of positive Ricci curvature in cohomogeneity four. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:282 / 289
页数:8
相关论文
共 23 条
[1]  
ALEKSEEVSKY A, 1993, DIFFERENTIAL GEOMETR
[2]  
Bass Hyman, 1984, PURE APPL MATH, V112
[3]   Homogeneous Riemannian manifolds of positive Ricci curvature [J].
Berestovskii, VN .
MATHEMATICAL NOTES, 1995, 58 (3-4) :905-909
[4]  
Besse A. L, 2002, Classics in Mathematics
[5]   Geometrization of 3-dimensional orbifolds [J].
Boileau, M ;
Leeb, B ;
Porti, J .
ANNALS OF MATHEMATICS, 2005, 162 (01) :195-290
[6]  
COOPER D, 2000, MATH SOC JAPAN MEM, V5
[7]  
DEARRICOTT O, 2008, A 7 MANIFOLD POSITIV
[8]  
DINKELBACH J, 2008, ARXIV08010803V2MATHG
[9]   Curvature and symmetry of Milnor spheres [J].
Grove, K ;
Ziller, W .
ANNALS OF MATHEMATICS, 2000, 152 (01) :331-367
[10]   Cohomogeneity one manifolds with positive Ricci curvature [J].
Grove, K ;
Ziller, W .
INVENTIONES MATHEMATICAE, 2002, 149 (03) :619-646