Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer

被引:122
作者
Suarez-Ibarrola, Rodrigo [1 ]
Hein, Simon [1 ]
Reis, Gerd [2 ]
Gratzke, Christian [1 ]
Miernik, Arkadiusz [1 ]
机构
[1] Univ Freiburg, Med Ctr, Fac Med, Dept Urol, Hugstetter Str 55, D-79106 Freiburg, Germany
[2] German Res Ctr Artificial Intelligence, Dept Augmented Vis, Kaiserslautern, Germany
关键词
Artificial intelligence; Machine learning; Deep learning; Artificial neural network; Convolutional neural network; Prostate cancer; Bladder cancer; Renal cell carcinoma; Urolithiasis; TEXTURE ANALYSIS; ARTIFICIAL-INTELLIGENCE; NEURAL-NETWORK; CT; GRADE; DIFFERENTIATION; ANGIOMYOLIPOMA; FEATURES; PREDICT; MASSES;
D O I
10.1007/s00345-019-03000-5
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
PurposeThe purpose of the study was to provide a comprehensive review of recent machine learning (ML) and deep learning (DL) applications in urological practice. Numerous studies have reported their use in the medical care of various urological disorders; however, no critical analysis has been made to date.MethodsA detailed search of original articles was performed using the PubMed MEDLINE database to identify recent English literature relevant to ML and DL applications in the fields of urolithiasis, renal cell carcinoma (RCC), bladder cancer (BCa), and prostate cancer (PCa).ResultsIn total, 43 articles were included addressing these four subfields. The most common ML and DL application in urolithiasis is in the prediction of endourologic surgical outcomes. The main area of research involving ML and DL in RCC concerns the differentiation between benign and malignant small renal masses, Fuhrman nuclear grade prediction, and gene expression-based molecular signatures. BCa studies employ radiomics and texture feature analysis for the distinction between low- and high-grade tumors, address accurate image-based cytology, and use algorithms to predict treatment response, tumor recurrence, and patient survival. PCa studies aim at developing algorithms for Gleason score prediction, MRI computer-aided diagnosis, and surgical outcomes and biochemical recurrence prediction. Studies consistently found the superiority of these methods over traditional statistical methods.ConclusionsThe continuous incorporation of clinical data, further ML and DL algorithm retraining, and generalizability of models will augment the prediction accuracy and enhance individualized medicine.
引用
收藏
页码:2329 / 2347
页数:19
相关论文
共 55 条
[1]   Application of artificial intelligence to the management of urological cancer [J].
Abbod, Maysam F. ;
Catto, James W. F. ;
Linkens, Derek A. ;
Hamdy, Freddie C. .
JOURNAL OF UROLOGY, 2007, 178 (04) :1150-1156
[2]   Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer [J].
Abdollahi, Hamid ;
Mofid, Bahram ;
Shiri, Isaac ;
Razzaghdoust, Abolfazl ;
Saadipoor, Afshin ;
Mahdavi, Arash ;
Galandooz, Hassan Maleki ;
Mahdavi, Seied Rabi .
RADIOLOGIA MEDICA, 2019, 124 (06) :555-567
[3]   Artificial Neural Network System to Predict the Postoperative Outcome of Percutaneous Nephrolithotomy [J].
Aminsharifi, Alireza ;
Irani, Dariush ;
Pooyesh, Shima ;
Parvin, Hamid ;
Dehghani, Sakineh ;
Yousofi, Khalilolah ;
Fazel, Ebrahim ;
Zibaie, Fatemeh .
JOURNAL OF ENDOUROLOGY, 2017, 31 (05) :461-467
[4]   Automated Gleason grading of prostate cancer tissue microarrays via deep learning [J].
Arvaniti, Eirini ;
Fricker, Kim S. ;
Moret, Michael ;
Rupp, Niels ;
Hermanns, Thomas ;
Fankhauser, Christian ;
Wey, Norbert ;
Wild, Peter J. ;
Ruschoff, Jan H. ;
Claassen, Manfred .
SCIENTIFIC REPORTS, 2018, 8
[5]   askMUSIC: Leveraging a Clinical Registry to Develop a New Machine Learning Model to Inform Patients of Prostate Cancer Treatments Chosen by Similar Men [J].
Auffenberg, Gregory B. ;
Ghani, Khurshid R. ;
Ramani, Shreyas ;
Usoro, Etiowo ;
Denton, Brian ;
Rogers, Craig ;
Stockton, Benjamin ;
Miller, David C. ;
Singh, Karandeep .
EUROPEAN UROLOGY, 2019, 75 (06) :901-907
[6]   Global Evolution of Research in Artificial Intelligence in Health and Medicine: A Bibliometric Study [J].
Bach Xuan Tran ;
Giang Thu Vu ;
Giang Hai Ha ;
Quan-Hoang Vuong ;
Manh-Tung Ho ;
Thu-Trang Vuong ;
Viet-Phuong La ;
Manh-Toan Ho ;
Nghiem, Kien-Cuong P. ;
Huong Lan Thi Nguyen ;
Latkin, Carl A. ;
Tam, Wilson W. S. ;
Cheung, Ngai-Man ;
Nguyen, Hong-Kong T. ;
Ho, Cyrus S. H. ;
Ho, Roger C. M. .
JOURNAL OF CLINICAL MEDICINE, 2019, 8 (03)
[7]   Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder [J].
Bartsch, Georg, Jr. ;
Mitra, Anirban P. ;
Mitra, Sheetal A. ;
Almal, Arpit A. ;
Steven, Kenneth E. ;
Skinner, Donald G. ;
Fry, David W. ;
Lenehan, Peter F. ;
Worzel, William P. ;
Cote, Richard J. .
JOURNAL OF UROLOGY, 2016, 195 (02) :493-498
[8]   Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade [J].
Bektas, Ceyda Turan ;
Kocak, Burak ;
Yardimci, Aytul Hande ;
Turkcanoglu, Mehmet Hamza ;
Yucetas, Ugur ;
Koca, Sevim Baykal ;
Erdim, Cagri ;
Kilickesmez, Ozgur .
EUROPEAN RADIOLOGY, 2019, 29 (03) :1153-1163
[9]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137
[10]   Automated tumour budding quantification by machine learning augments TNM staging in muscle-invasive bladder cancer prognosis [J].
Brieu, Nicolas ;
Gavriel, Christos G. ;
Nearchou, Ines P. ;
Harrison, David J. ;
Schmidt, Guenter ;
Caie, Peter D. .
SCIENTIFIC REPORTS, 2019, 9 (1)