APPLICATIONS OF EMPIRICAL MODE DECOMPOSITION IN RANDOM NOISE ATTENUATION OF SEISMIC DATA

被引:0
作者
Chen, Yangkang [1 ]
Zhou, Chao [2 ]
Yuan, Jiang [2 ]
Jin, Zhaoyu [3 ]
机构
[1] Univ Texas Austin, Bur Econ Geol, John A & Katherine G Jackson Sch Geosci, Austin, TX 78713 USA
[2] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102200, Peoples R China
[3] Univ Edinburgh, Grant Inst, Edinburgh, Midlothian, Scotland
来源
JOURNAL OF SEISMIC EXPLORATION | 2014年 / 23卷 / 05期
关键词
empirical mode decomposition; random noise attenuation; t-x EMD; f-x EMD; iterative blending noise attenuation; shaping regularization; SPECTRUM;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, we give an exclusive introduction about the applications of empirical mode decomposition (EMD) to random noise attenuation of seismic data. EMD can be used to denoise each 1D signal from the 2D seismic profile in time-space (t-x) domain either along the time direction or space direction. However, because of the mode-mixing problem, t-x domain EMD along the time direction will cause some damage to a useful seismic signal. A better way is to apply EMD along the space direction and remove the highly oscillating components. The frequency-space (f-x) domain EMD can help obtain faster implementation and even better performances. In order to deal with complex seismic profiles, a hybrid denoising approach based on f-x EMD is also introduced. The hybrid denoising approach can also be inserted into an iterative blending noise attenuation framework, and can help obtain better results. We use both synthetic and field data examples to demonstrate the proposed applications of EMD.
引用
收藏
页码:481 / 495
页数:15
相关论文
共 15 条
  • [1] LATERAL PREDICTION FOR NOISE ATTENUATION BY T-X AND F-X TECHNIQUES
    ABMA, R
    CLAERBOUT, J
    [J]. GEOPHYSICS, 1995, 60 (06) : 1887 - 1896
  • [2] [Anonymous], SIGNAL PROCESSING IE
  • [3] Random and coherent noise attenuation by empirical mode decomposition
    Bekara, Maiza
    van der Baan, Mirko
    [J]. GEOPHYSICS, 2009, 74 (05) : V89 - V98
  • [4] Canales L.L., 1984, 54 ANN INT M SEG, P525, DOI DOI 10.1190/1.1894168
  • [5] Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization
    Chen, Yangkang
    Fomel, Sergey
    Hu, Jingwei
    [J]. GEOPHYSICS, 2014, 79 (05) : V179 - V189
  • [6] Random noise attenuation by f-x empirical-mode decomposition predictive filtering
    Chen, Yangkang
    Ma, Jitao
    [J]. GEOPHYSICS, 2014, 79 (03) : V81 - V91
  • [7] Cheng WD, 2012, STRUCT BOND, V144, P1, DOI [10.1007/430_2011_64, 10.1109/ICADE.2012.6330087]
  • [8] Dong Z. Li, 2013, SEG TECH PROGRAM EXP, P4412
  • [9] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    Huang, NE
    Shen, Z
    Long, SR
    Wu, MLC
    Shih, HH
    Zheng, QN
    Yen, NC
    Tung, CC
    Liu, HH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971): : 903 - 995
  • [10] Kopecky M, 2010, ACTA POLYTECH, V50