An Advanced Machine Learning Approach to Generalised Epileptic Seizure Detection

被引:0
作者
Fergus, Paul [1 ]
Hignett, David [1 ]
Hussain, Abir Jaffar [1 ]
Al-Jumeily, Dhiya [1 ]
机构
[1] Liverpool John Moores Univ, Appl Comp Res Grp, Liverpool L3 3AF, Merseyside, England
来源
INTELLIGENT COMPUTING IN BIOINFORMATICS | 2014年 / 8590卷
关键词
Seizure; non-seizure; machine learning; classification; Electroencephalogram; oversampling; PREDICTION;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Epilepsy is a chronic neurological condition that affects approximately 70 million people worldwide. Characterised by sudden bursts of excess electricity in the brain manifesting as seizures, epilepsy is still not well understood when compared with other neurological disorders. Seizures often happen unexpectedly and attempting to predict them has been a research topic for the last 20 years. Electroencephalograms have been integral to these studies, as they can capture the brain's electrical signals. The challenge is to generalise the detection of seizures in different regions of the brain and across multiple subjects. This paper explores this idea further and presents a supervised machine learning approach that classifies seizure and non-seizure records using an open dataset containing 543 electroencephalogram segments. Our approach posits a new method for generalising seizure detection across different subjects without prior knowledge about the focal point of seizures. Our results show an improvement on existing studies with 88% for sensitivity, 88% for specificity and 93% for the area under the curve, with a 12% global error, using the k-NN classifier.
引用
收藏
页码:112 / 118
页数:7
相关论文
共 17 条
  • [1] A fuzzy rule-based system for epileptic seizure detection in intracranial EEG
    Aarabi, A.
    Fazel-Rezai, R.
    Aghakhani, Y.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2009, 120 (09) : 1648 - 1657
  • [2] Abdul-Latif AA, 2004, PROCEEDINGS OF THE 2004 INTELLIGENT SENSORS, SENSOR NETWORKS & INFORMATION PROCESSING CONFERENCE, P531
  • [3] Seizure prediction: Methods
    Carney, Paul R.
    Myers, Stephen
    Geyer, James D.
    [J]. EPILEPSY & BEHAVIOR, 2011, 22 : S94 - S101
  • [4] Epileptic activity recognition in EEG recording
    Diambra, L
    de Figueiredo, JCB
    Malta, CP
    [J]. PHYSICA A, 1999, 273 (3-4): : 495 - 505
  • [5] Engel J., 2013, SEIZUREEPILEPSY, Vsecond, P736
  • [6] Premature mortality in epilepsy and the role of psychiatric comorbidity: a total population study
    Fazel, Seena
    Wolf, Achim
    Langstrom, Niklas
    Newton, Charles R.
    Lichtenstein, Paul
    [J]. LANCET, 2013, 382 (9905) : 1646 - 1654
  • [7] A comparison of quantitative EEG features for neonatal seizure detection
    Greene, B. R.
    Faul, S.
    Marnane, W. P.
    Lightbody, G.
    Korotchikova, I.
    Boylan, G. B.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2008, 119 (06) : 1248 - 1261
  • [8] Assessment of a scalp EEG-based automated seizure detection system
    Kelly, K. M.
    Shiau, D. S.
    Kern, R. T.
    Chien, J. H.
    Yang, M. C. K.
    Yandora, K. A.
    Valeriano, J. P.
    Halford, J. J.
    Sackellares, J. C.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2010, 121 (11) : 1832 - 1843
  • [9] Epileptic seizure prediction and control
    Lasemidis, LD
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (05) : 549 - 558
  • [10] Libenson M.H., 2009, PRACTICAL APPROACH E, P464