共 37 条
Organocatalytic Anticancer Drug Loading of Degradable Polymeric Mixed Micelles via a Biomimetic Mechanism
被引:36
作者:
Chan, Julian M. W.
[1
]
Tan, Jeremy P. K.
[2
]
Engler, Amanda C.
[1
]
Ke, Xiyu
[2
]
Gao, Shujun
[2
]
Yang, Chuan
[2
]
Sardon, Haritz
[1
,3
]
Yang, Yi Yan
[2
]
Hedrick, James L.
[1
]
机构:
[1] IBM Corp, Almaden Res Ctr, 650 Harry Rd, San Jose, CA 95120 USA
[2] Inst Bioengn & Nanotechnol, 31 Biopolis Way, Singapore 138669, Singapore
[3] Univ Basque Country, UPV EHU, POLYMAT, Joxe Mari Korta Ctr, Avda Tolosa 72, Donostia San Sebastian 20018, Spain
关键词:
DELIVERY;
NONCOVALENT;
STABILITY;
CHEMISTRY;
DOPAMINE;
ACID;
D O I:
10.1021/acs.macromol.5b02784
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
Although self-assembled polymeric micelles have received significant attention as anticancer drug delivery systems, most of them suffer initial burst release of drugs after injection. Herein, a novel organocatalytic drug loading approach is reported to chemically conjugate anticancer drugs to the micellar core through an acid-labile bond that only breaks in the acidic tumor tissue and endolysosomal environments. Specifically, a degradable polymeric micelle system based on amphiphilic mPEG-b-polycarbonate block copolymers was developed. The mussel-inspired polymer design features catechol side chains to which the anticancer drug doxorubicin (DOX) can be covalently conjugated as pH-sensitive p-quinoneimines via a mechanism that mimics the Raper Mason pathway of mammalian melanogenesis. We demonstrate that a higher drug loading is achieved when N-methylimidazole is cointroduced during self-assembly as an organocatalyst. The DOX-loaded mixed micelles formed from a catechol-functionalized polycarbonate/PEG block copolymer and a sister polymer with imidazole side chains are kinetically stable and display no signs of premature drug release, but possess comparable cytotoxicity in cancer cells to free DOX by a pH-triggered intracellular release. Moreover, we show that the nanoparticles accumulate in tumors through the enhanced permeability and retention (EPR) effect, and that the DOX-loaded mixed micelles suppress tumor growth more effectively than free DOX without causing toxicity in a mouse breast cancer model.
引用
收藏
页码:2013 / 2021
页数:9
相关论文