A data-driven Bayesian network learning method for process fault diagnosis

被引:157
|
作者
Amin, Md Tanjin [1 ]
Khan, Faisal [1 ]
Ahmed, Salim [1 ]
Imtiaz, Syed [1 ]
机构
[1] Mem Univ, Fac Engn & Appl Sci, Ctr Risk Integr & Safety Engn C RISE, St John, NF A1B 3X5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Process monitoring; Fault diagnosis; Process safety; Correlation dimension; Vine copula; Bayesian network; SYSTEMS; MODEL; IDENTIFICATION;
D O I
10.1016/j.psep.2021.04.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a data-driven methodology for fault detection and diagnosis (FDD) by integrating the principal component analysis (PCA) with the Bayesian network (BN). Though the integration of PCA-BN for FDD purposes has been studied in the past, the present work makes two contributions for process systems. First, the application of correlation dimension (CD) to select principal components (PCs) automatically. Second, the use of Kullback-Leibler divergence (KLD) and copula theory to develop a data-based BN learning technique. The proposed method uses a combination of vine copula and Bayes' theorem (BT) to capture nonlinear dependence of high-dimensional process data which eliminates the need for discretization of continuous data. The data-driven integrated PCA-BN framework has been applied to two processing systems. Performance of the proposed methodology is compared with the independent component analysis (ICA), kernel principal component analysis (KPCA), kernel independent component analysis (KICA), and their integrated frameworks with the BN. The comparative study suggests that the proposed framework provides superior performance. (c) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 122
页数:13
相关论文
共 50 条
  • [31] A data-driven multiplicative fault diagnosis approach for automation processes
    Hao, Haiyang
    Zhang, Kai
    Ding, Steven X.
    Chen, Zhiwen
    Lei, Yaguo
    ISA TRANSACTIONS, 2014, 53 (05) : 1436 - 1445
  • [32] DATA-DRIVEN TECHNIQUES FOR THE FAULT DIAGNOSIS OF A WIND TURBINE BENCHMARK
    Simani, Silvio
    Farsoni, Saverio
    Castaldi, Paolo
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2018, 28 (02) : 247 - 268
  • [33] Data-driven exploratory models of an electric distribution network for fault prediction and diagnosis
    Renga, Daniela
    Apiletti, Daniele
    Giordano, Danilo
    Nisi, Matteo
    Huang, Tao
    Zhang, Yang
    Mellia, Marco
    Baralis, Elena
    COMPUTING, 2020, 102 (05) : 1199 - 1211
  • [34] Data-driven exploratory models of an electric distribution network for fault prediction and diagnosis
    Daniela Renga
    Daniele Apiletti
    Danilo Giordano
    Matteo Nisi
    Tao Huang
    Yang Zhang
    Marco Mellia
    Elena Baralis
    Computing, 2020, 102 : 1199 - 1211
  • [35] Data-driven fault diagnosis approaches for industrial equipment: A review
    Sahu, Atma Ram
    Palei, Sanjay Kumar
    Mishra, Aishwarya
    EXPERT SYSTEMS, 2024, 41 (02)
  • [36] Multiple sensor fault diagnosis by evolving data-driven approach
    El-Koujok, M.
    Benammar, M.
    Meskin, N.
    Al-Naemi, M.
    Langari, R.
    INFORMATION SCIENCES, 2014, 259 : 346 - 358
  • [37] Bearing Fault Diagnosis Under Small Data Set Condition: A Bayesian Network Method With Transfer Learning for Parameter Estimation
    Hou, Yongyan
    Yang, Ao
    Guo, Wenqiang
    Zheng, Enrang
    Xiao, Qinkun
    Guo, Zhigao
    Huang, Zixuan
    IEEE ACCESS, 2022, 10 : 35768 - 35783
  • [38] A data-driven hybrid sensor fault detection/diagnosis method with flight test data
    Song, Jinsheng
    Chen, Ziqiao
    Wang, Dong
    Wen, Xin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [39] Survey on data-driven industrial process monitoring and diagnosis
    Qin, S. Joe
    ANNUAL REVIEWS IN CONTROL, 2012, 36 (02) : 220 - 234
  • [40] A Review of Data-Driven Machinery Fault Diagnosis Using Machine Learning Algorithms
    Jian Cen
    Zhuohong Yang
    Xi Liu
    Jianbin Xiong
    Honghua Chen
    Journal of Vibration Engineering & Technologies, 2022, 10 : 2481 - 2507