A data-driven Bayesian network learning method for process fault diagnosis

被引:180
作者
Amin, Md Tanjin [1 ]
Khan, Faisal [1 ]
Ahmed, Salim [1 ]
Imtiaz, Syed [1 ]
机构
[1] Mem Univ, Fac Engn & Appl Sci, Ctr Risk Integr & Safety Engn C RISE, St John, NF A1B 3X5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Process monitoring; Fault diagnosis; Process safety; Correlation dimension; Vine copula; Bayesian network; SYSTEMS; MODEL; IDENTIFICATION;
D O I
10.1016/j.psep.2021.04.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a data-driven methodology for fault detection and diagnosis (FDD) by integrating the principal component analysis (PCA) with the Bayesian network (BN). Though the integration of PCA-BN for FDD purposes has been studied in the past, the present work makes two contributions for process systems. First, the application of correlation dimension (CD) to select principal components (PCs) automatically. Second, the use of Kullback-Leibler divergence (KLD) and copula theory to develop a data-based BN learning technique. The proposed method uses a combination of vine copula and Bayes' theorem (BT) to capture nonlinear dependence of high-dimensional process data which eliminates the need for discretization of continuous data. The data-driven integrated PCA-BN framework has been applied to two processing systems. Performance of the proposed methodology is compared with the independent component analysis (ICA), kernel principal component analysis (KPCA), kernel independent component analysis (KICA), and their integrated frameworks with the BN. The comparative study suggests that the proposed framework provides superior performance. (c) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 122
页数:13
相关论文
共 54 条
[1]   Dynamic Failure Analysis of Process Systems Using Principal Component Analysis and Bayesian Network [J].
Adedigba, Sunday A. ;
Khan, Faisal ;
Yang, Ming .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (08) :2094-2106
[2]   A novel data-driven methodology for fault detection and dynamic risk assessment [J].
Amin, Md. Tanjin ;
Khan, Faisal ;
Ahmed, Salim ;
Imtiaz, Syed .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (11) :2397-2416
[3]   Robust Process Monitoring Methodology for Detection and Diagnosis of Unobservable Faults [J].
Amin, Md. Tanjin ;
Khan, Faisal ;
Imtiaz, Syed ;
Ahmed, Salim .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (41) :19149-19165
[4]   Fault detection and pathway analysis using a dynamic Bayesian network [J].
Amin, Md Tanjin ;
Khan, Faisal ;
Imtiaz, Syed .
CHEMICAL ENGINEERING SCIENCE, 2019, 195 :777-790
[5]   Process system fault detection and diagnosis using a hybrid technique [J].
Amin, Md Tanjin ;
Imtiaz, Syed ;
Khan, Faisal .
CHEMICAL ENGINEERING SCIENCE, 2018, 189 :191-211
[6]  
[Anonymous], 2010, Advances in neural information processing systems
[7]  
Azzalini A., 1997, APPL SMOOTHING ANAL
[8]   Risk-Based Fault Diagnosis and Safety Management for Process Systems [J].
Bao, Huizhi ;
Khan, Faisal ;
Iqbal, Tariq ;
Chang, Yanjun .
PROCESS SAFETY PROGRESS, 2011, 30 (01) :6-17
[9]   Bayesian network based dynamic operational risk assessment [J].
Barua, Shubharthi ;
Gao, Xiaodan ;
Pasman, Hans ;
Mannan, M. Sam .
JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2016, 41 :399-410
[10]  
Brechmann EC, 2013, J STAT SOFTW, V52