How do helix-helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo-oligomeric helical bundles

被引:135
作者
DeGrado, WF [1 ]
Gratkowski, H [1 ]
Lear, JD [1 ]
机构
[1] Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
关键词
membrane protein; peptides; folding; helix association; FRET; analytical ultracentrifugation;
D O I
10.1110/ps.0236503
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The final, structure-determining step in the folding of membrane proteins involves the coalescence of preformed transmembrane helices to form the native tertiary structure. Here, we review recent studies on small peptide and protein systems that are providing quantitative data on the interactions that drive this process. Gel electrophoresis, analytical ultracentrifugation, and fluorescence resonance energy transfer (FRET) are useful methods for examining the assembly of homo-oligomeric transmembrane helical proteins. These methods have been used to study the assembly of the M2 proton channel from influenza A virus, glycophorin, phospholamban, and several designed membrane proteins-all of which have a single transmembrane helix that is sufficient for association into a transmembrane helical bundle. These systems are being studied to determine the relative thermodynamic contributions of van der Waals interactions, conformational entropy, and polar interactions in the stabilization of membrane proteins. Although the database of thermodynamic information is not yet large, a few generalities are beginning to emerge concerning the energetic differences between membrane and water-soluble proteins: the packing of apolar side chains in the interior of helical membrane proteins plays a smaller, but nevertheless significant, role in stabilizing their structure. Polar, hydrogen-bonded interactions occur less frequently, but, nevertheless, they often provide a strong driving force for folding helix-helix pairs in membrane proteins. These studies are laying the groundwork for the design of sequence motifs that dictate the association of membrane helices.
引用
收藏
页码:647 / 665
页数:19
相关论文
共 193 条
[1]   A heterodimerizing leucine zipper coiled coil system for examining the specificity of a position interactions: Amino acids I, V, L, N, A, and K [J].
Acharya, A ;
Ruvinov, SB ;
Gal, J ;
Moll, JR ;
Vinson, C .
BIOCHEMISTRY, 2002, 41 (48) :14122-14131
[2]   Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins [J].
Adamian, L ;
Liang, J .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 311 (04) :891-907
[3]   Interhelical hydrogen bonds and spatial motifs in membrane proteins: Polar clamps and serine zippers [J].
Adamian, L ;
Liang, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (02) :209-218
[4]  
Adams PD, 1996, PROTEINS, V26, P257, DOI 10.1002/(SICI)1097-0134(199611)26:3<257::AID-PROT2>3.3.CO
[5]  
2-O
[6]   COMPUTATIONAL SEARCHING AND MUTAGENESIS SUGGEST A STRUCTURE FOR THE PENTAMERIC TRANSMEMBRANE DOMAIN OF PHOSPHOLAMBAN [J].
ADAMS, PD ;
ARKIN, IT ;
ENGELMAN, DM ;
BRUNGER, AT .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (02) :154-162
[7]   Buried polar residues in coiled-coil interfaces [J].
Akey, DL ;
Malashkevich, VN ;
Kim, PS .
BIOCHEMISTRY, 2001, 40 (21) :6352-6360
[8]   Structure of the transmembrane cysteine residues in phospholamban [J].
Arkin, IT ;
Adams, PD ;
Brunger, AT ;
Aimoto, S ;
Engelman, DM ;
Smith, SO .
JOURNAL OF MEMBRANE BIOLOGY, 1997, 155 (03) :199-206
[9]   STRUCTURAL MODEL OF THE PHOSPHOLAMBAN ION-CHANNEL COMPLEX IN PHOSPHOLIPID-MEMBRANES [J].
ARKIN, IT ;
ROTHMAN, M ;
LUDLAM, CFC ;
AIMOTO, S ;
ENGELMAN, DM ;
ROTHSCHILD, KJ ;
SMITH, SO .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 248 (04) :824-834
[10]   STRUCTURAL ORGANIZATION OF THE PENTAMERIC TRANSMEMBRANE ALPHA-HELICES OF PHOSPHOLAMBAN, A CARDIAC ION-CHANNEL [J].
ARKIN, IT ;
ADAMS, PD ;
MACKENZIE, KR ;
LEMMON, MA ;
BRUNGER, AT ;
ENGELMAN, DM .
EMBO JOURNAL, 1994, 13 (20) :4757-4764