SPATIOTEMPORAL COMPLEXITY IN A PREDATOR-PREY MODEL WITH WEAK ALLEE EFFECTS

被引:29
作者
Cai, Yongli [1 ]
Banerjee, Malay [2 ]
Kang, Yun [3 ]
Wang, Weiming [4 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[3] Arizona State Univ, Sch Letters & Sci, Sci & Math Fac, Mesa, AZ 85212 USA
[4] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou, Peoples R China
基金
美国国家科学基金会;
关键词
Allee effects; density dependent; non-constant solution; turing instability; pattern formation; STATIONARY PATTERNS; LIMIT-CYCLES; FUNCTIONAL-RESPONSES; QUALITATIVE-ANALYSIS; GLOBAL STABILITY; DIFFUSION; DYNAMICS; SYSTEM; INSTABILITIES; UNIQUENESS;
D O I
10.3934/mbe.2014.11.1247
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we study the rich dynamics of a diffusive predator-prey system with Allee effects in the prey growth. Our model assumes a prey-dependent Holling type-II functional response and a density dependent death rate for predator. We investigate the dissipation and persistence property, the stability of nonnegative and positive constant steady state of the model, as well as the existence of Hopf bifurcation at the positive constant solution. In addition, we provide results on the existence and non-existence of positive nonconstant solutions of the model. We also demonstrate the Turing instability under some conditions, and find that our model exhibits a diffusion-controlled formation growth of spots, stripes, and holes pattern replication via numerical simulations. One of the most interesting findings is that Turing instability in the model is induced by the density dependent death rate in predator.
引用
收藏
页码:1247 / 1274
页数:28
相关论文
共 82 条
[31]   Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the Allee effect on prey [J].
Gonzalez-Olivares, Eduardo ;
Meneses-Alcay, Hector ;
Gonzalez-Yanez, Betsabe ;
Mena-Lorca, Jaime ;
Rojas-Palma, Alejandro ;
Ramos-Jiliberto, Rodrigo .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) :2931-2942
[32]   On a predator-prey system of Gause type [J].
Hasik, Karel .
JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 60 (01) :59-74
[33]  
Henry D., 1981, Geometric Theory of Semilinear Parabolic Equations, DOI DOI 10.1007/BFB0089647
[34]   Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system [J].
Hsu, SB ;
Hwang, TW ;
Kuang, Y .
JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 42 (06) :489-506
[35]   Uniqueness of the limit cycle for cause-type predator-prey systems [J].
Hwang, TW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 238 (01) :179-195
[36]   Dynamics of a intraguild predation model with generalist or specialist predator [J].
Kang, Yun ;
Wedekin, Lauren .
JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 67 (05) :1227-1259
[37]   A qualitative study on general Gause-type predator-prey models with constant diffusion rates [J].
Ko, Wonlyul ;
Ryu, Kimun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :217-230
[38]  
KUANG Y, 1990, J MATH BIOL, V28, P463
[39]   Global qualitative analysis of a ratio-dependent predator-prey system [J].
Kuang, Y ;
Beretta, E .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 36 (04) :389-406
[40]  
KUANG Y, 1988, Mathematical Biosciences, V88, P67, DOI 10.1016/0025-5564(88)90049-1