Mining maximal frequent itemsets for intrusion detection

被引:0
|
作者
Wang, H [1 ]
Li, QH [1 ]
Xiong, HY [1 ]
Jiang, SY [1 ]
机构
[1] Huazhong Univ Sci & Technol, Comp Sch, Wuhan 430074, Peoples R China
来源
GRID AND COOPERATIVE COMPUTING GCC 2004 WORKSHOPS, PROCEEDINGS | 2004年 / 3252卷
关键词
data mining; intrusion detection; maximal frequent itemset;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It has been the recent research focus and trend to apply data mining techniques in an intrusion detection system for discovering new types of attacks, but it is still in its infancy. This paper presents an innovative technique, called MMID, that applies maximal frequent itemsets mining to intrusion detection and can significantly improve the accuracy and performance of an intrusion detection system. The experimental results show that MMID is efficient and accurate for the attacks that occur intensively in a short period of time.
引用
收藏
页码:422 / 429
页数:8
相关论文
共 50 条
  • [1] Mining Maximal Frequent Itemsets over Sampling Databases
    Li, Haifeng
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL FORUM ON ELECTRICAL ENGINEERING AND AUTOMATION (IFEEA 2015), 2016, 54 : 28 - 31
  • [2] Mining maximal frequent itemsets in uncertain data
    Tang, Xianghong
    Yang, Quanwei
    Zheng, Yang
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43 (09): : 29 - 34
  • [3] Scalable algorithm for mining maximal frequent itemsets
    Li, QH
    Wang, H
    He, Y
    Jiang, SY
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 143 - 146
  • [4] Mining maximal frequent itemsets for large scale transaction databases
    Xia, R
    Yuan, W
    Ding, SC
    Liu, J
    Zhou, HB
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 1480 - 1485
  • [5] An algorithm for mining maximal frequent itemsets without candidate generation
    Li Haiwen
    Yang Li
    Hong De
    2011 INTERNATIONAL CONFERENCE ON COMPUTER, ELECTRICAL, AND SYSTEMS SCIENCES, AND ENGINEERING (CESSE 2011), 2011, : 330 - 333
  • [6] GenMax: An Efficient Algorithm for Mining Maximal Frequent Itemsets
    Karam Gouda
    Mohammed J. Zaki
    Data Mining and Knowledge Discovery, 2005, 11 : 223 - 242
  • [7] Mining maximal frequent itemsets from data streams
    Mao, Guojun
    Wu, Xindong
    Zhu, Xingquan
    Chen, Gong
    Liu, Chunnian
    JOURNAL OF INFORMATION SCIENCE, 2007, 33 (03) : 251 - 262
  • [8] GenMax: An efficient algorithm for mining maximal frequent itemsets
    Gouda, K
    Zaki, MJ
    DATA MINING AND KNOWLEDGE DISCOVERY, 2005, 11 (03) : 223 - 242
  • [9] Mining maximal frequent itemsets by a boolean based approach
    Salleb, A
    Maazouzi, Z
    Vrain, C
    ECAI 2002: 15TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 77 : 385 - 389
  • [10] MID: An Innovative Model for Intrusion Detection by Mining Maximal Frequent Patterns
    Wang, Hui
    Ma, Chuanxiang
    Zhang, Hongjun
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,