Dichotomies for Lp spaces

被引:14
作者
Glab, Szymon [1 ]
Strobin, Filip [1 ,2 ]
机构
[1] Tech Univ Lodz, Inst Math, PL-93005 Lodz, Poland
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
关键词
Measure space; L-p space; Porous sets; Porosity;
D O I
10.1016/j.jmaa.2010.02.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assume that (X, Sigma, mu) is a measure space and p(1), . . . , p(n), r > 0. We prove that {(f(1), . . . , f(n)) is an element of L-p1 x . . . x L-pn; f(1) . . . f(n) is an element of L-r} is either L-p1 x . . . x L-pn or a sigma-porous subset of L-p1 x . . . x L-pn. This dichotomy depends on properties of mu and the sign of the number 1/r - 1/p(1) - . . . - 1/p(n). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:382 / 390
页数:9
相关论文
共 6 条
[1]  
BALCERZAK M, 2000, REAL ANAL EXCHANGE, V26, P877
[2]  
Fremlin D. H., 2001, Measure Theory, V2
[3]  
Grafakos L., 2008, GRAD TEXTS MATH, V249
[4]   A nonlinear Banach-Steinhaus theorem and some meager sets in Banach spaces [J].
Jachymski, J .
STUDIA MATHEMATICA, 2005, 170 (03) :303-320
[5]   On σ-porous sets in abstract spaces [J].
Zajicek, L. .
ABSTRACT AND APPLIED ANALYSIS, 2005, (05) :509-534
[6]  
Zajiek L., 1987, Real Anal. Exchange, V13, P314