A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries

被引:94
作者
Wang, Xiaowei [1 ,2 ,3 ]
Wang, Liqun [2 ]
Zhang, Bao [1 ]
Feng, Jianmin [2 ]
Zhang, Jiafeng [1 ]
Ou, Xing [1 ]
Hou, Feng [3 ]
Liang, Ji [3 ,4 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[2] Tianjin Normal Univ, Coll Phys & Mat Sci, Tianjin 300387, Peoples R China
[3] Tianjin Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Ceram & Machining Technol, Tianjin 300072, Peoples R China
[4] Univ Wollongong, Australian Inst Innovat Mat AIIM, Inst Superconducting & Elect Mat ISEM, Innovat Campus,Squires Way, Wollongong, NSW 2522, Australia
来源
JOURNAL OF ENERGY CHEMISTRY | 2021年 / 59卷
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Zinc-ion batteries; Carbon nanotube films; Flexible cathode; Wearable devices; HIGH-PERFORMANCE; ULTRATHIN FILMS; GRAPHENE OXIDE; THIN-FILMS; FABRICATION; NANOTUBES; ENERGY; COMPOSITES; PROGRESS; AREA;
D O I
10.1016/j.jechem.2020.10.007
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Aqueous zinc-ion batteries (ZIBs) are receiving a continuously increasing attention for mobile devices, especially for the flexible and wearable electronics, due to their non-toxicity, non-flammability, and low-cost features. Despite the significant progress in achieving higher capacities for electrode materials of ZIBs, to endow them with high flexibility and economic feasibility is, however, still a significant challenge remaining unsolved. Herein, we present a highly flexible composite film composed of carbon nanotube film and V2O5 (CNTF@V2O5) with high strength and high conductivity, which is prepared by simply impregnating a porous CNT film with an aqueous V2O5 sol under vacuum. For this material, intimate incorporation between V2O5 and CNTs has been achieved, successfully integrating the high zinc ion storage capability with high mechanical flexibility. As a result, this CNTF@V2O5 film delivers a high capacity of 356.6 mAh g(-1) at 0.4 A g(-1) and excellent cycling stability with 80.1% capacity retention after 500 cycles at 2.0 A g(-1). The novel strategy and the outstanding battery performance presented in this work should shed light on the development of high-performance and flexible ZIBs. (C) 2020 Published by ELSEVIER B.V. and Science Press on behalf of Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 50 条
  • [1] Cable-like V2O5 Decorated Carbon Cloth as a High-Capacity Cathode for Flexible Zinc Ion Batteries
    Wang, Yingchao
    Jiang, Guangshen
    Zhang, Zhuo
    Chen, Hanchu
    Li, Yutong
    Kong, Debin
    Qin, Xin
    Li, Yanyan
    Zhang, Xinghao
    Wang, Hui
    ENERGY TECHNOLOGY, 2022, 10 (05)
  • [2] Oxygen vacancy H2V3O8 nanowires as high-capacity cathode materials for aqueous zinc-ion batteries
    Li, Xiang
    Chen, Zhiwei
    Li, Yang
    Xu, Yiran
    Bai, Donglong
    Deng, Bin
    Yao, Wei
    Xu, Jianguang
    IONICS, 2024, : 5279 - 5289
  • [3] V-MOF@carbon nanotube derived three-dimensional V2O5@carbon nanotube as high-performance cathode for aqueous zinc-ion batteries
    Liu, Mengmei
    Li, Zhihua
    Zhang, Yibo
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 942
  • [4] Spinel Zn3V3O8: A high-capacity zinc supplied cathode for aqueous Zn-ion batteries
    Wu, Jian
    Kuang, Quan
    Zhang, Ke
    Feng, Jingjie
    Huang, Chunmao
    Li, Jiajie
    Fan, Qinghua
    Dong, Youzhong
    Zhao, Yanming
    ENERGY STORAGE MATERIALS, 2021, 41 : 297 - 309
  • [5] A layer separated V2O5-PEG-amine hybrid cathode material for high capacity zinc-ion batteries
    Zafar, Saad
    Sharma, Muskan
    Shai, Krithik M. P.
    Karmodak, Naiwrit
    Singh, Santosh K.
    Lochab, Bimlesh
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (47) : 32947 - 32956
  • [6] Electrochemical Studies of Carbon Nanotube-LiFePO4 Nanocomposite Cathode for High-Capacity Lithium-Ion Batteries
    Sun, Xiangcheng
    Feng, Kun
    Chen, Zhongwei
    Cui, Bo
    18TH INTERNATIONAL MEETING ON LITHIUM BATTERIES (IMLB 2016), 2016, 73 (01): : 129 - 135
  • [7] Carbon nanotube-penetrated mesoporous V2O5 microspheres as high-performance cathode materials for lithium-ion batteries
    Jia, Xilai
    Zhang, Liqiang
    Zhang, Rufan
    Lu, Yunfeng
    Wei, Fei
    RSC ADVANCES, 2014, 4 (40): : 21018 - 21022
  • [8] Electrolyte Concentration Regulation Boosting Zinc Storage Stability of High-Capacity K0.486V2O5 Cathode for Bendable Quasi-Solid-State Zinc Ion Batteries
    Li, Linpo
    Liu, Shuailei
    Liu, Wencong
    Ba, Deliang
    Liu, Wenyi
    Gui, Qiuyue
    Chen, Yao
    Hu, Zuoqi
    Li, Yuanyuan
    Liu, Jinping
    NANO-MICRO LETTERS, 2021, 13 (01)
  • [9] LiF/Fe/V2O5 nanocomposite as high capacity cathode for lithium ion batteries
    Das, B.
    Pohl, A.
    Chakravadhanula, V. S. K.
    Kuebel, C.
    Fichtner, M.
    JOURNAL OF POWER SOURCES, 2014, 267 : 203 - 211
  • [10] Vanadium Hexacyanoferrate as a High-Capacity and High-Voltage Cathode for Aqueous Rechargeable Zinc Ion Batteries
    Zhang, Shijing
    Pang, Qiang
    Ai, Yuqing
    He, Wei
    Fu, Yao
    Xing, Mingming
    Tian, Ying
    Luo, Xixian
    NANOMATERIALS, 2022, 12 (23)