Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer

被引:159
作者
Jiang, Meng [1 ]
Li, Chang-Li [2 ]
Luo, Xiao-Mao [3 ,4 ]
Chuan, Zhi-Rui [3 ,4 ]
Lv, Wen-Zhi [5 ]
Li, Xu [6 ]
Cui, Xin-Wu [1 ]
Dietrich, Christoph F. [7 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Med Ultrasound, 1095 Jiefang Ave, Wuhan 430030, Hubei, Peoples R China
[2] Hubei Prov Hosp Integrated Chinese & Western Med, Dept Geratol, 11 Lingjiaohu Ave, Wuhan 430015, Peoples R China
[3] Kunming Med Univ, Dept Med Ultrasound, Yunnan Canc Hosp, Kunming 650118, Yunnan, Peoples R China
[4] Kunming Med Univ, Affiliated Hosp 3, Kunming 650118, Yunnan, Peoples R China
[5] Julei Technol, Dept Artificial Intelligence, Wuhan 430030, Peoples R China
[6] South Cent Univ Nationalities, Sch Biomed Engn, 182 Minyuan Rd, Wuhan 430074, Peoples R China
[7] Hirslanden Clin, Dept Internal Med, Schanzlihalde 11, CH-3013 Bern, Switzerland
基金
中国博士后科学基金;
关键词
PPathological complete response; DDeep learning; RRadiomic nomogram; Locally advanced breast cancer; PREDICTION; ESTROGEN; NOMOGRAM; MRI;
D O I
10.1016/j.ejca.2021.01.028
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: The aim of the study was to develop and validate a deep learning radiomic nomogram (DLRN) for preoperatively assessing breast cancer pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) based on the pre- and post-treatment ultrasound. Methods: Patients with locally advanced breast cancer (LABC) proved by biopsy who proceeded to undergo preoperative NAC were enrolled from hospital #1 (training cohort, 356 cases) and hospital #2 (independent external validation cohort, 236 cases). Deep learning and handcrafted radiomic features reflecting the phenotypes of the pre- treatment (radiomic signature [RS] 1) and post-treatment tumour (RS2) were extracted. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression were used for feature selection and RS construction. A DLRN was then developed based on the RSs and independent clinicopathological risk factors. The performance of the model was assessed with regard to calibration, discrimination and clinical usefulness. Results: The DLRN predicted the pCR status with accuracy, yielded an area under the receiver operator characteristic curve of 0.94 (95% confidence interval, 0.91-0.97) in the validation cohort, with good calibration. The DLRN outperformed the clinical model and single RS within both cohorts (P < 0.05, as per the DeLong test) and performed better than two experts' prediction of pCR (both P < 0.01 for comparison of total accuracy). Besides, prediction within the hormone receptor-positive/human epidermal growth factor receptor 2 (HER2)-negative, HER2+ and triple-negative subgroups also achieved good discrimination performance, with an AUC of 0.90, 0.95 and 0.93, respectively, in the external validation cohort. Decision curve analysis confirmed that the model was clinically useful. Conclusion: A deep learning-based radiomic nomogram had good predictive value for pCR in LABC, which could provide valuable information for individual treatment. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:95 / 105
页数:11
相关论文
共 33 条
[1]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[2]   Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update [J].
Allison, Kimberly H. ;
Hammond, M. Elizabeth H. ;
Dowsett, Mitchell ;
McKernin, Shannon E. ;
Carey, Lisa A. ;
Fitzgibbons, Patrick L. ;
Hayes, Daniel F. ;
Lakhani, Sunil R. ;
Chavez-MacGregor, Mariana ;
Perlmutter, Jane ;
Perou, Charles M. ;
Regan, Meredith M. ;
Rimm, David L. ;
Symmans, W. Fraser ;
Torlakovic, Emina E. ;
Varella, Leticia ;
Viale, Giuseppe ;
Weisberg, Tracey F. ;
McShane, Lisa M. ;
Wolff, Antonio C. .
JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (12) :1346-+
[3]   PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant chemotherapy [J].
Antunovic, Lidija ;
De Sanctis, Rita ;
Cozzi, Luca ;
Kirienko, Margarita ;
Sagona, Andrea ;
Torrisi, Rosalba ;
Tinterri, Corrado ;
Santoro, Armando ;
Chiti, Arturo ;
Zelic, Renata ;
Sollini, Martina .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (07) :1468-1477
[4]   Ultrasound-based prediction of pathologic response to neoadjuvant chemotherapy in breast cancer patients [J].
Baumgartner, Annina ;
Tausch, Christoph ;
Hosch, Stefanie ;
Papassotiropoulos, Barbel ;
Varga, Zsuzsanna ;
Rageth, Christoph ;
Baege, Astrid .
BREAST, 2018, 39 :19-23
[5]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[6]  
CA A, 2019, China Oncol, V29, P390, DOI DOI 10.19401/J.CNKI.1007-3639.2019.05.009
[7]   Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set [J].
Cain, Elizabeth Hope ;
Saha, Ashirbani ;
Harowicz, Michael R. ;
Marks, Jeffrey R. ;
Marcom, P. Kelly ;
Mazurowski, Maciej A. .
BREAST CANCER RESEARCH AND TREATMENT, 2019, 173 (02) :455-463
[8]   Combining Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Apparent Diffusion Coefficient Maps for a Radiomics Nomogram to Predict Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Patients [J].
Chen, Xiangguang ;
Chen, Xiaofeng ;
Yang, Jiada ;
Li, Yulin ;
Fan, Weixiong ;
Yang, Zhiqi .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2020, 44 (02) :275-283
[9]   Nomogram for accurate prediction of breast and axillary pathologic response after neoadjuvant chemotherapy in node positive patients with breast cancer [J].
Choi, Hee Jun ;
Ryu, Jai Min ;
Kim, Isaac ;
Nam, Seok Jin ;
Kim, Seok Won ;
Yu, Jonghan ;
Lee, Jeong Eon ;
Lee, Se Kyung .
ANNALS OF SURGICAL TREATMENT AND RESEARCH, 2019, 96 (04) :169-176
[10]   Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J].
Cortazar, Patricia ;
Zhang, Lijun ;
Untch, Michael ;
Mehta, Keyur ;
Costantino, Joseph P. ;
Wolmark, Norman ;
Bonnefoi, Herve ;
Cameron, David ;
Gianni, Luca ;
Valagussa, Pinuccia ;
Swain, Sandra M. ;
Prowell, Tatiana ;
Loibl, Sibylle ;
Wickerham, D. Lawrence ;
Bogaerts, Jan ;
Baselga, Jose ;
Perou, Charles ;
Blumenthal, Gideon ;
Blohmer, Jens ;
Mamounas, Eleftherios P. ;
Bergh, Jonas ;
Semiglazov, Vladimir ;
Justice, Robert ;
Eidtmann, Holger ;
Paik, Soonmyung ;
Piccart, Martine ;
Sridhara, Rajeshwari ;
Fasching, Peter A. ;
Slaets, Leen ;
Tang, Shenghui ;
Gerber, Bernd ;
Geyer, Charles E., Jr. ;
Pazdur, Richard ;
Ditsch, Nina ;
Rastogi, Priya ;
Eiermann, Wolfgang ;
von Minckwitz, Gunter .
LANCET, 2014, 384 (9938) :164-172