Observing Charge Transfer Interaction in CuI and MoS2 Heterojunction for Photoresponsive Device Application

被引:17
作者
Mahyavanshi, Rakesh D. [1 ]
Desai, Pradeep [1 ]
Ranade, Ajinkya [1 ]
Tanemura, Masaki [1 ]
Kalita, Golap [1 ,2 ]
机构
[1] Nagoya Inst Technol, Dept Phys Sci & Engn, Showa Ku, Gokiso Cho, Nagoya, Aichi 4668555, Japan
[2] Nagoya Inst Technol, Frontier Res Inst Mat Sci, Showa Ku, Gokiso Cho, Nagoya, Aichi 4668555, Japan
关键词
n-type MoS2; p-type CuI; cubic crystalline structure; interface quality; photoresponsive device; MONOLAYER MOS2; LAYER MOS2; HIGH-PERFORMANCE; COPPER IODIDE; PHOTOLUMINESCENCE; GENERATION; ULTRAFAST; FILM;
D O I
10.1021/acsaelm.8b00069
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Charge transfer interaction at the interface of semiconducting layered materials is of great interest to develop effective heterojunction optoelectronic devices. Here, we demonstrate the charge transfer interaction and formation of an active heterojunction between the molybdenum disulfide (MoS2) layer and p-type copper iodide (CuI) exhibiting excellent photoresponsive properties. The CuI film was fabricated by solid phase iodization of a copper film and direct thermal evaporation processes, which led to the formation of a transparent conducting layer. The thermally evaporated (111) plane, confirming the formation of the gamma-CuI cubic crystal structure along the (111) plane on the MoS2 layers. The photoluminescence (PL) quenching effect was observed for the gamma-CuI/MoS2 heterostructure, which can be attributed to the spontaneous separation of charge carriers at the interface. A photoresponsivity of 0.27 A/W was obtained at a bias voltage of 5 V for the gamma-CuI/MoS2 heterojunction device with illumination of monochromatic light. Our finding shows that the excellent photoresponsivity in the fabricated heterojunction is due to the formation of an effective interface between the two materials for efficient exciton dissociation and charge separation.
引用
收藏
页码:302 / 310
页数:17
相关论文
共 49 条
[21]  
Lopez-Sanchez O, 2013, NAT NANOTECHNOL, V8, P497, DOI [10.1038/NNANO.2013.100, 10.1038/nnano.2013.100]
[22]   Three-dimensional Architecture Enabled by Strained Two-dimensional Material Heterojunction [J].
Lou, Shuai ;
Liu, Yin ;
Yang, Fuyi ;
Ling, Shuren ;
Zhang, Ruopeng ;
Deng, Yang ;
Wang, Michael ;
Tom, Kyle B. ;
Zhou, Fei ;
Ding, Hong ;
Bustillo, Karen C. ;
Wang, Xi ;
Yan, Shancheng ;
Scott, Mary ;
Minor, Andrew ;
Yao, Jie .
NANO LETTERS, 2018, 18 (03) :1819-1825
[23]   Photovoltaic Action With Broadband Photoresponsivity in Germanium - MoS2 Ultrathin Heterojunction [J].
Mahyavanshi, Rakesh D. ;
Kalita, Golap ;
Ranade, Ajinkya ;
Desai, Pradeep ;
Kondo, Masaharu ;
Dewa, Takehisa ;
Tanemura, Masaki .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (10) :4434-4440
[24]   Atomically Thin MoS2: A New Direct-Gap Semiconductor [J].
Mak, Kin Fai ;
Lee, Changgu ;
Hone, James ;
Shan, Jie ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (13)
[25]  
Mak KF, 2012, NAT NANOTECHNOL, V7, P494, DOI [10.1038/nnano.2012.96, 10.1038/NNANO.2012.96]
[26]   Ultrafast charge transfer in MoS2/WSe2 p-n Heterojunction [J].
Peng, Bo ;
Yu, Guannan ;
Liu, Xinfeng ;
Liu, Bo ;
Liang, Xiao ;
Bi, Lei ;
Deng, Longjiang ;
Sum, Tze Chien ;
Loh, Kian Ping .
2D MATERIALS, 2016, 3 (02)
[27]   A vertically layered MoS2/Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector [J].
Qiao, Shuang ;
Cong, Ridong ;
Liu, Jihong ;
Liang, Baolai ;
Fu, Guangsheng ;
Yu, Wei ;
Ren, Kailiang ;
Wang, Shufang ;
Pan, Caofeng .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (13) :3233-3239
[28]  
Radisavljevic B, 2011, NAT NANOTECHNOL, V6, P147, DOI [10.1038/nnano.2010.279, 10.1038/NNANO.2010.279]
[29]  
Roy K, 2013, NAT NANOTECHNOL, V8, P826, DOI [10.1038/nnano.2013.206, 10.1038/NNANO.2013.206]
[30]   Fabrication of poly(methyl methacrylate)-MoS2/graphene heterostructure for memory device application [J].
Shinde, Sachin M. ;
Kalita, Golap ;
Tanemura, Masaki .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (21)