Jensen's inequality for spectral order and submajorization

被引:18
作者
Antezana, Jorge
Massey, Pedro
Stojanoff, Demetrio
机构
[1] Natl Univ La Plata, FCE, Dept Matemat, RA-1900 La Plata, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IAM, RA-1900 La Plata, Argentina
关键词
Jensen's inequality; convex functions; positive maps; majorization;
D O I
10.1016/j.jmaa.2006.08.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be aC*-algebra and phi: A -> L(H) be a positive unital map. Then, for a convex function f : I -> R defined on some open interval and a self-adjoint element a E A whose spectrum lies in I, we obtain a Jensen's-type inequality f (phi (a)) <= phi (f (a)) where <= denotes an operator preorder (usual order, spectral preorder, majorization) and depends on the class of convex functions considered, i.e., monotone convex or arbitrary convex functions. Some extensions of Jensen's-type inequalities to the multi-variable case are considered. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:297 / 307
页数:11
相关论文
共 14 条
[1]  
ANTEZANA J, ARXIVORGMATHFA041144
[2]   Weak majorization inequalities and convex functions [J].
Aujla, JS ;
Silva, FC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 :217-233
[3]  
AUJLA JS, IN PRESS LINEAR ALGE
[4]  
Bhatia R., 2013, MATRIX ANAL
[5]  
BROWN LG, 1990, J OPERAT THEOR, V23, P3
[6]  
Davis C., 1963, P 7 S PURE MATH, V7, P187
[7]  
Farenick D. R., 2005, J RAMANUJAN MATH SOC, V20, P107
[8]  
FARENICK DR, IN PRESS J MATH ANAL
[9]   Jensen's trace inequality in several variables [J].
Hansen, F ;
Pedersen, GK .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (06) :667-681
[10]   Jensen's operator inequality [J].
Hansen, F ;
Pedersen, GK .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :553-564