Scale-Up Biomass Pathway to Cobalt Single-Site Catalysts Anchored on N-Doped Porous Carbon Nanobelt with Ultrahigh Surface Area

被引:148
作者
Zhu, Youqi [1 ]
Sun, Wenming [2 ]
Chen, Wenxing [1 ]
Cao, Tai [1 ]
Xiong, Yu [1 ]
Luo, Jun [3 ]
Dong, Juncai [4 ]
Zheng, Lirong [4 ]
Zhang, Jian [1 ]
Wang, Xiaolu [1 ]
Chen, Chen [1 ]
Peng, Qing [1 ]
Wang, Dingsheng [1 ]
Li, Yadong [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[2] China Bldg Mat Acad, State Key Lab Green Bldg Mat, Beijing 100041, Peoples R China
[3] Tianjin Univ Technol, Ctr Electron Microscopy, Tianjin 300384, Peoples R China
[4] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
2D nanobelt; biomass; cobalt; porous carbon; single-site catalysts; SELECTIVE OXIDATION; C CATALYST; NITROGEN; EFFICIENT; SHELL; ATOMS;
D O I
10.1002/adfm.201802167
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Porous CoNC catalysts with ultrahigh surface area are highly required for catalytic reactions. Here, a scale-up method to synthesize gram-quantities of isolated Co single-site catalysts anchored on N-doped porous carbon nanobelt (Co-ISA/CNB) by pyrolysis of biomass-derived chitosan is reported. The usage of ZnCl2 and CoCl2 salts as effective activation-graphitization agents can introduce a porous belt-like nanostructure with ultrahigh specific surface area (2513 m(2) g(-1)) and high graphitization degree. Spherical aberration correction electron microscopy and X-ray absorption fine structure analysis reveal that Co species are present as isolated single sites and stabilized by nitrogen in CoN4 structure. All these characters make Co-ISA/CNB an efficient catalyst for selective oxidation of aromatic alkanes at room temperature. For oxidation of ethylbenzene, the Co-ISA/CNB catalysts yield a conversion up to 98% with 99% selectivity, while Co nanoparticles are inert. Density functional theory calculations reveal that the generated Co=O centers on isolated Co single sites are responsible for the excellent catalytic efficiency.
引用
收藏
页数:8
相关论文
共 33 条
  • [1] Atomic-Level Insight into Optimizing the Hydrogen Evolution Pathway over a Co1-N4 Single-Site Photocatalyst
    Cao, Yuanjie
    Chen, Si
    Luo, Qiquan
    Yan, Huan
    Lin, Yue
    Liu, Wei
    Cao, Linlin
    Lu, Junling
    Yang, Jinlong
    Yao, Tao
    Wei, Shiqiang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (40) : 12191 - 12196
  • [2] Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction
    Chen, Wenxing
    Pei, Jiajing
    He, Chun-Ting
    Wan, Jiawei
    Ren, Hanlin
    Zhu, Youqi
    Wang, Yu
    Dong, Juncai
    Tian, Shubo
    Cheong, Weng-Chon
    Lu, Siqi
    Zheng, Lirong
    Zheng, Xusheng
    Yan, Wensheng
    Zhuang, Zhongbin
    Chen, Chen
    Peng, Qing
    Wang, Dingsheng
    Li, Yadong
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (50) : 16086 - 16090
  • [3] Platinum single-atom and cluster catalysis of the hydrogen evolution reaction
    Cheng, Niancai
    Stambula, Samantha
    Wang, Da
    Banis, Mohammad Norouzi
    Liu, Jian
    Riese, Adam
    Xiao, Biwei
    Li, Ruying
    Sham, Tsun-Kong
    Liu, Li-Min
    Botton, Gianluigi A.
    Sun, Xueliang
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [4] First principles methods using CASTEP
    Clark, SJ
    Segall, MD
    Pickard, CJ
    Hasnip, PJ
    Probert, MJ
    Refson, K
    Payne, MC
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6): : 567 - 570
  • [5] A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature
    Deng, Dehui
    Chen, Xiaoqi
    Yu, Liang
    Wu, Xing
    Liu, Qingfei
    Liu, Yun
    Yang, Huaixin
    Tian, Huanfang
    Hu, Yongfeng
    Du, Peipei
    Si, Rui
    Wang, Junhu
    Cui, Xiaoju
    Li, Haobo
    Xiao, Jianping
    Xu, Tao
    Deng, Jiao
    Yang, Fan
    Duchesne, Paul N.
    Zhang, Peng
    Zhou, Jigang
    Sun, Litao
    Li, Jianqi
    Pan, Xiulian
    Bao, Xinhe
    [J]. SCIENCE ADVANCES, 2015, 1 (11):
  • [6] Atomic cobalt on nitrogen-doped graphene for hydrogen generation
    Fei, Huilong
    Dong, Juncai
    Arellano-Jimenez, M. Josefina
    Ye, Gonglan
    Kim, Nam Dong
    Samuel, Errol L. G.
    Peng, Zhiwei
    Zhu, Zhuan
    Qin, Fan
    Bao, Jiming
    Yacaman, Miguel Jose
    Ajayan, Pulickel M.
    Chen, Dongliang
    Tour, James M.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [7] Nitrogen-Doped sp2-Hybridized Carbon as a Superior Catalyst for Selective Oxidation
    Gao, Yongjun
    Hu, Gang
    Zhong, Jun
    Shi, Zujin
    Zhu, Yuanshuai
    Su, Dang Sheng
    Wang, Jianguo
    Bao, Xinhe
    Ma, Ding
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (07) : 2109 - 2113
  • [8] Semiempirical GGA-type density functional constructed with a long-range dispersion correction
    Grimme, Stefan
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) : 1787 - 1799
  • [9] Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction
    Han, Yunhu
    Wang, Yang-Gang
    Chen, Wenxing
    Xu, Ruirui
    Zheng, Lirong
    Zhang, Jian
    Luo, Jun
    Shen, Rong-An
    Zhu, Youqi
    Cheong, Weng-Chon
    Chen, Chen
    Peng, Qing
    Wang, Dingsheng
    Li, Yadong
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (48) : 17269 - 17272
  • [10] Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors
    Hou, Jianhua
    Cao, Chuanbao
    Idrees, Faryal
    Ma, Xilan
    [J]. ACS NANO, 2015, 9 (03) : 2556 - 2564