Fixed points of multivalued operators in ordered metric spaces with applications

被引:52
作者
Hong, Shihuang [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Appl Math & Engn Computat, Hangzhou 310018, Peoples R China
关键词
Multivalued operators; Hybrid fixed points; Ordered complete metric space; Hausdorff distance; Impulsive hyperbolic differential inclusions; GENERALIZED CONTRACTIONS; NONLINEAR CONTRACTIONS; BANACH-ALGEBRAS; GREGUS TYPE; THEOREMS; EXISTENCE; MAPPINGS;
D O I
10.1016/j.na.2010.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to present some new (hybrid) fixed point theorems involving multivalued operators which satisfy weakly generalized contractive conditions in an ordered complete metric space. An example of the existence of solutions for a perturbed impulsive hyperbolic differential inclusion with variable times is given to illustrate the usability of our results. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3929 / 3942
页数:14
相关论文
共 44 条
[1]   Generalized contractions in partially ordered metric spaces [J].
Agarwal, Ravi P. ;
El-Gebeily, M. A. ;
O'Regan, Donal .
APPLICABLE ANALYSIS, 2008, 87 (01) :109-116
[2]  
Alber YaI., 1997, New results in Operator Theory and its Applications, P7
[3]   Common fixed point theorems of Gregus type for weakly compatible mappings satisfying generalized contractive conditions [J].
Aliouche, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) :705-719
[4]  
Banach S., 1922, Fund. Math., V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[5]  
Banas J., 2002, Panam. Math. J, V12, P101
[6]   Existence theory for perturbed impulsive hyperbolic differential inclusions with variable times [J].
Belarbi, Abdelkader ;
Benchohra, Mouffak .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :1116-1129
[7]  
Benchohra M., 2003, Appl. Anal, V82, P1085, DOI [10.1080/00036810310001613160, DOI 10.1080/00036810310001613160]
[8]  
Benchohra M., 2003, TOPOL METHOD NONL AN, V22, P319
[9]  
Branciari A., 2002, Int J Math Math Sci, V29, P531, DOI [10.1155/S0161171202007524, DOI 10.1155/S0161171202007524]
[10]  
Caccioppoli R., 1930, Atti Accad. Naz. Lincei Rend, V11, P794