Global existence of classical solutions for a haptotaxis model

被引:126
作者
Walker, Christoph [1 ]
Webb, Glenn F. [1 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
haptotaxis; diffusion; global existence; uniqueness; classical solutions;
D O I
10.1137/060655122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A system of nonlinear partial differential equations modeling haptotaxis is investigated. The model arises in cell migration processes involved in tumor invasion. The existence of unique global classical solutions is proved.
引用
收藏
页码:1694 / 1713
页数:20
相关论文
共 24 条
[2]  
Amann H., 2004, J DIFFER EQUATIONS, V218, P1
[3]  
Amann H., 1991, Nonlinear analysis, P27
[4]  
Amann H., 1995, Abstract Linear Theory, Monographs inMathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[5]   Continuous and discrete mathematical models of tumor-induced angiogenesis [J].
Anderson, ARA ;
Chaplain, MAJ .
BULLETIN OF MATHEMATICAL BIOLOGY, 1998, 60 (05) :857-899
[6]   A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion [J].
Anderson, ARA .
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2005, 22 (02) :163-186
[7]  
[Anonymous], LECT NOTES MATH
[8]   Computational methods and results for structured multiscale models of tumor invasion [J].
Ayati, Bruce P. ;
Webb, Glenn F. ;
Anderson, Alexander R. A. .
MULTISCALE MODELING & SIMULATION, 2006, 5 (01) :1-20
[9]   PRINCIPLES OF CELL MOTILITY - DIRECTION OF CELL MOVEMENT AND CANCER INVASION [J].
CARTER, SB .
NATURE, 1965, 208 (5016) :1183-&
[10]   HAPTOTAXIS AND MECHANISM OF CELL MOTILITY [J].
CARTER, SB .
NATURE, 1967, 213 (5073) :256-&