Bogomolny-Prasad-Sommerfeld state counting in local obstructed curves from quiver theory and Seiberg duality

被引:9
作者
Chuang, Wu-Yen [1 ]
Pan, Guang [1 ]
机构
[1] Rutgers State Univ, Dept Phys, NHETC, Piscataway, NJ 08854 USA
关键词
CONIFOLD; BRANES;
D O I
10.1063/1.3364787
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the Bogomolny-Prasad-Sommerfeld (BPS) state counting in the geometry of local obstructed curve with normal bundle O circle plus O(-2). We find that the BPS states have a framed quiver description. Using this quiver description along with the Seiberg duality and the localization techniques, we can compute the BPS state indices in different chambers dictated by stability parameter assignments. This provides a well-defined method to compute the generalized Donaldson-Thomas invariants. This method can be generalized to other affine ADE quiver theories. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3364787]
引用
收藏
页数:22
相关论文
共 37 条
[1]  
[Anonymous], ARXIVHEPTH0207027
[2]   Computation of superpotentials for D-branes [J].
Aspinwall, PS ;
Katz, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (01) :227-253
[3]  
ASPINWALL PS, ARXIVHEPTH0412209
[4]  
Berenstein D, 2002, J HIGH ENERGY PHYS
[5]  
Berenstein D, 2001, J HIGH ENERGY PHYS
[6]  
BERENSTEIN D, ARXIVHEPTH0105229
[7]  
BERENSTEIN D, ARXIVHEPTH0201093
[8]   A geometric unification of dualities [J].
Cachazo, F ;
Fiol, B ;
Intriligator, K ;
Katz, S ;
Vafa, C .
NUCLEAR PHYSICS B, 2002, 628 (1-2) :3-78
[9]  
CACHAZO F, ARXIVHEPTH0110028
[10]   Wall Crossing of BPS States on the Conifold from Seiberg Duality and Pyramid Partitions [J].
Chuang, Wu-yen ;
Jafferis, Daniel Louis .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (01) :285-301