Enthalpy relaxation of unconstrained and constrained amorphous phase for low isotacticity polypropylene

被引:8
作者
Furushima, Yoshitomo [1 ]
Toda, Akihiko [2 ]
Nakada, Masaru [1 ]
Hirota, Nobuhiro [1 ]
Takahashi, Hideaki [1 ]
Tatsuki, Toshiumi [3 ]
Fujiwara, Satoshi [3 ]
Okada, Kazuma [3 ]
Ohkura, Masatoshi [3 ]
机构
[1] Toray Res Ctr Ltd, Shiga Lab, Otsu, Shiga 5208567, Japan
[2] Hiroshima Univ, Grad Sch Adv Sci & Engn, Higashihiroshima 7398521, Japan
[3] Toray Industries Ltd, Films & Film Prod Res Labs, Otsu, Shiga 5208558, Japan
关键词
Enthalpy relaxation; Crystallinity; Low isotacticity polypropylene; Fast scanning calorimetry; Constrained amorphous; TEMPERATURE-MODULATED DSC; ISOTHERMAL CRYSTALLIZATION; POLYMER CRYSTALLIZATION; FICTIVE TEMPERATURE; MESOMORPHIC PHASE; HEAT-CAPACITY; FRACTION; TRANSITION; NANOCALORIMETRY; DISAPPEARANCE;
D O I
10.1016/j.polymer.2022.124991
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The influence of crystallization on the amorphous phase of low isotacticity polypropylene (LT-PP) was studied by analyzing the enthalpy relaxation behavior using fast scanning calorimetry (FSC) and temperature modulated FSC. The high temperature shift of the enthalpy recovery peak and the glass transition temperature during crystallization was interpreted as a transformation of the unconstrained amorphous (UCA) to constrained amorphous (CA) phase. Enthalpy relaxation approach had the same result as the conventional heat capacity analysis of mobile amorphous (MA) phase as proposed by Wunderlich. Our study revealed that successive glass transition of rigid amorphous (RA) phase in a three-phase model and the gradual increase in the heat capacity of the MA phase in a two-phase model are experimentally indistinguishable above the crystallization temperature.
引用
收藏
页数:10
相关论文
共 64 条
[21]   ENTHALPY RELAXATION AND RECOVERY IN AMORPHOUS MATERIALS [J].
HODGE, IM .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1994, 169 (03) :211-266
[22]   Isothermal crystallization and melting of isotactic polypropylene analyzed by time- and temperature-dependent small-angle X-ray scattering experiments [J].
Iijima, M ;
Strobl, G .
MACROMOLECULES, 2000, 33 (14) :5204-5214
[23]   ISOTACTICITY EFFECT ON CRYSTALLIZATION AND MELTING IN POLYPROPYLENE FRACTIONS .3. OVERALL CRYSTALLIZATION AND MELTING BEHAVIOR [J].
JANIMAK, JJ ;
CHENG, SZD ;
ZHANG, AQ ;
HSIEH, ET .
POLYMER, 1992, 33 (04) :728-735
[24]   ISOTACTICITY EFFECT ON CRYSTALLIZATION AND MELTING IN POLY(PROPYLENE) FRACTIONS .2. LINEAR CRYSTAL-GROWTH RATE AND MORPHOLOGY STUDY [J].
JANIMAK, JJ ;
CHENG, SZD ;
GIUSTI, PA ;
HSIEH, ET .
MACROMOLECULES, 1991, 24 (09) :2253-2260
[25]   Theoretical Analysis of the Spunbond Process and its Applications for Polypropylenes [J].
Kanai, Toshitaka ;
Kohri, Youhei ;
Takebe, Tomoaki .
PROCEEDINGS OF THE REGIONAL CONFERENCE GRAZ 2015 - POLYMER PROCESSING SOCIETY PPS: CONFERENCE PAPERS, 2016, 1779
[26]   Structure and Properties of Low-Isotacticity Polypropylene Elastomeric Fibers Prepared by Sheath-Core Bicomponent Spinning - Effect of the Composition of Sheath Layer with Constant High-Isotacticity Polypropylene Content [J].
Kohri, Youhei ;
Takebe, Tomoaki ;
Minami, Yutaka ;
Kanai, Toshitaka ;
Takarada, Wataru ;
Kikutani, Takeshi .
SEN-I GAKKAISHI, 2014, 70 (09) :203-212
[27]  
Kolmogorov A. A., 1937, IZV AKAD NAUK SSSR M, V1, P355, DOI DOI 10.1007/978-94-011-2260-3_22
[28]   Effect of isotacticity on formation of mesomorphic phase of isotactic polypropylene [J].
Konishi, T ;
Nishida, K ;
Kanaya, T ;
Kaji, K .
MACROMOLECULES, 2005, 38 (21) :8749-8754
[30]  
Lu SX, 1996, POLYMER, V37, P4857, DOI 10.1016/S0032-3861(96)00376-X