A practical implementation of risk management for the clinical introduction of online adaptive Magnetic Resonance-guided radiotherapy

被引:37
作者
Klueter, Sebastian [1 ,2 ]
Schrenk, Oliver [1 ,2 ]
Renkamp, Claudia Katharina [1 ,2 ]
Gliessmann, Stefan [3 ]
Kress, Melanie [1 ,2 ]
Debus, Juergen [1 ,2 ,4 ,5 ,6 ,7 ]
Hoerner-Rieber, Juliane [1 ,2 ,7 ]
机构
[1] Heidelberg Univ Hosp, Dept Radiat Oncol, Neuenheimer Feld 400, D-69120 Heidelberg, Germany
[2] Natl Ctr Radiat Oncol NCRO, Heidelberg Inst Radiat Oncol HIRO, Heidelberg, Germany
[3] Stefan Gliessmann Risk Management & Consulting, Hildesheim, Germany
[4] Natl Ctr Tumor Dis NCT, Heidelberg, Germany
[5] Heidelberg Univ Hosp, Heidelberg Ion Beam Therapy Ctr HIT, Dept Radiat Oncol, Heidelberg, Germany
[6] German Canc Consortium DKTK, Core Ctr Heidelberg, Heidelberg, Germany
[7] German Canc Res Ctr, Clin Cooperat Unit Radiat Oncol, Heidelberg, Germany
关键词
FMEA; Risk management; MR-guided radiation therapy; Online adaptive; On-table adaptive; FAILURE MODE; EFFICIENCY;
D O I
10.1016/j.phro.2020.12.005
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: The clinical introduction of on-table adaptive radiotherapy with Magnetic Resonance (MR)-guided linear accelerators (Linacs) yields new challenges and potential risks. Since the adapted plan is created within a highly interdisciplinary workflow with the patient in treatment position, time pressure or erroneous communication may lead to various possibly hazardous situations. To identify risks and implement a safe workflow, a proactive risk analysis has been conducted. Materials and methods: A process failure mode, effects and criticality analysis (P-FMECA) was performed within a group of radiation therapy technologists, physicians and physicists together with an external moderator. The workflow for on-table adaptive MR-guided treatments was defined and for each step potentially hazardous situations were identified. The risks were evaluated within the team in order to homogenize risk assessment. The team elaborated and discussed possible mitigation strategies and carried out their implementation. Results: In total, 89 risks were identified for the entire MR-guided online adaptive workflow. After mitigation, all risks could be minimized to an acceptable level. Overall, the need for a standardized workflow, clear-defined protocols together with the need for checklists to ensure protocol adherence were identified among the most important mitigation measures. Moreover, additional quality assurance processes and automated plan checks were developed. Conclusions: Despite additional workload and beyond the fulfilment of legal requirements, execution of the P-FMECA within an interdisciplinary team helped all involved occupational groups to develop and foster an open culture of safety and to ensure a consensus for an efficient and safe online adaptive radiotherapy workflow.
引用
收藏
页码:53 / 57
页数:5
相关论文
共 26 条
[1]   Online Magnetic Resonance Image Guided Adaptive Radiation Therapy: First Clinical Applications [J].
Acharya, Sahaja ;
Fischer-Valuck, Benjamin W. ;
Kashani, Rojano ;
Parikh, Parag ;
Yang, Deshan ;
Zhao, Tianyu ;
Green, Olga ;
Wooten, Omar ;
Li, H. Harold ;
Hu, Yanle ;
Rodriguez, Vivian ;
Olsen, Lindsey ;
Robinson, Clifford ;
Michalski, Jeff ;
Mutic, Sasa ;
Olsen, Jeffrey .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 94 (02) :394-403
[2]   A practical implementation of physics quality assurance for photon adaptive radiotherapy [J].
Cai, Bin ;
Green, Olga L. ;
Kashani, Rojano ;
Rodriguez, Vivian L. ;
Mutic, Sasa ;
Yang, Deshan .
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2018, 28 (03) :211-223
[3]   MR-guidance in clinical reality: current treatment challenges and future perspectives [J].
Corradini, S. ;
Alongi, F. ;
Andratschke, N. ;
Belka, C. ;
Boldrini, L. ;
Cellini, F. ;
Debus, J. ;
Guckenberger, M. ;
Hoerner-Rieber, J. ;
Lagerwaard, F. J. ;
Mazzola, R. ;
Palacios, M. A. ;
Philippens, M. E. P. ;
Raaijmakers, C. P. J. ;
Terhaard, C. H. J. ;
Valentini, V. ;
Niyazi, M. .
RADIATION ONCOLOGY, 2019, 14 (1)
[4]   Practical Clinical Workflows for Online and Offline Adaptive Radiation Therapy [J].
Green, Olga L. ;
Henke, Lauren E. ;
Hugo, Geoffrey D. .
SEMINARS IN RADIATION ONCOLOGY, 2019, 29 (03) :219-227
[5]   A method for evaluating quality assurance needs in radiation therapy [J].
Huq, M. Saiful ;
Fraass, Benedick A. ;
Dunscombe, Peter B. ;
Gibbons, John P., Jr. ;
Ibbott, Geoffrey S. ;
Medin, Paul M. ;
Mundt, Arno ;
Mutic, Sassa ;
Palta, Jatinder R. ;
Thomadsen, Bruce R. ;
Williamson, Jeffrey F. ;
Yorke, Ellen D. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2008, 71 (01) :S170-S173
[6]   The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management [J].
Huq, M. Saiful ;
Fraass, Benedick A. ;
Dunscombe, Peter B. ;
Gibbons, John P., Jr. ;
Ibbott, Geoffrey S. ;
Mundt, Arno J. ;
Mutic, Sasa ;
Palta, Jatinder R. ;
Rath, Frank ;
Thomadsen, Bruce R. ;
Williamson, Jeffrey F. ;
Yorke, Ellen D. .
MEDICAL PHYSICS, 2016, 43 (07) :4209-4262
[7]   First prospective clinical evaluation of feasibility and patient acceptance of magnetic resonance-guided radiotherapy in Germany [J].
Klueter, Sebastian ;
Katayama, Sonja ;
Spindeldreier, C. Katharina ;
Koerber, Stefan A. ;
Major, Gerald ;
Alber, Markus ;
Akbaba, Sati ;
Debus, Juergen ;
Hoerner-Rieber, Juliane .
STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (08) :691-698
[8]   Technical design and concept of a 0.35 T MR-Linac [J].
Klueter, Sebastian .
CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2019, 18 :98-101
[9]   Medical physics challenges in clinical MR-guided radiotherapy [J].
Kurz, Christopher ;
Buizza, Giulia ;
Landry, Guillaume ;
Kamp, Florian ;
Rabe, Moritz ;
Paganelli, Chiara ;
Baroni, Guido ;
Reiner, Michael ;
Keall, Paul J. ;
van den Berg, Cornelis A. T. ;
Riboldi, Marco .
RADIATION ONCOLOGY, 2020, 15 (01)
[10]  
Lamb J, 2017, CUREUS J MED SCIENCE, V9, DOI 10.7759/cureus.1618