Variance of an anisotropic Bose-Einstein condensate

被引:14
作者
Klaiman, Shachar [1 ]
Beinke, Raphael [1 ]
Cederbaum, Lorenz S. [1 ]
Streltsov, Alexej I. [1 ,2 ]
Alon, Ofir E. [3 ,4 ]
机构
[1] Heidelberg Univ, Theoret Chem, Phys Chem Inst, Neuenheimer Feld 229, D-69120 Heidelberg, Germany
[2] Univ Kassel, Inst Phys, Heinrich Plett Str 40, D-34132 Kassel, Germany
[3] Univ Haifa, Dept Math, IL-3498838 Haifa, Israel
[4] Univ Haifa, Haifa Res Ctr Theoret Phys & Astrophys, IL-3498838 Haifa, Israel
基金
以色列科学基金会;
关键词
MANY-BODY PHYSICS; SCHRODINGER-EQUATION; DENSITY-MATRICES; NOBEL LECTURE; GAS; DYNAMICS; PARTICLE; SYSTEMS; MODEL;
D O I
10.1016/j.chemphys.2018.02.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The anisotropy of a trap potential can impact the density and variance of a Bose-Einstein condensate (BEC) in an opposite manner. We exemplify this effect for both the ground state and out-of-equilibrium dynamics of structureless bosons interacting by a long-range inter-particle interaction and trapped in a two-dimensional single-well potential. We demonstrate that even when the density of the BEC is, say, wider along the y direction and narrower along the x direction, its position variance can actually be smaller and momentum variance larger in the y direction than in the x direction. This behavior of the variance in a many-particle system is counterintuitive. It suggests using the variance as a tool to characterize the strength of correlations along the y and x directions in a trapped BEC. (C)2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 110 条
[11]   Quantum breathing mode of trapped bosons and fermions at arbitrary coupling [J].
Bauch, S. ;
Balzer, K. ;
Henning, C. ;
Bonitz, M. .
PHYSICAL REVIEW B, 2009, 80 (05)
[12]   The multiconfiguration time-dependent Hartree (MCTDH) method:: a highly efficient algorithm for propagating wavepackets [J].
Beck, MH ;
Jäckle, A ;
Worth, GA ;
Meyer, HD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 324 (01) :1-105
[13]   Many-body tunneling dynamics of Bose-Einstein condensates and vortex states in two spatial dimensions [J].
Beinke, Raphael ;
Klaiman, Shachar ;
Cederbaum, Lorenz S. ;
Streltsov, Alexej I. ;
Alon, Ofir E. .
PHYSICAL REVIEW A, 2015, 92 (04)
[14]   Entanglement in N-harmonium: bosons and fermions [J].
Benavides-Riveros, C. L. ;
Toranzo, I. V. ;
Dehesa, J. S. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (19)
[15]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[16]   Entanglement and the Born-Oppenheimer approximation in an exactly solvable quantum many-body system [J].
Bouvrie, Peter A. ;
Majtey, Ana P. ;
Tichy, Malte C. ;
Dehesa, Jesus S. ;
Plastino, Angel R. .
EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (11)
[17]   EVIDENCE OF BOSE-EINSTEIN CONDENSATION IN AN ATOMIC GAS WITH ATTRACTIVE INTERACTIONS [J].
BRADLEY, CC ;
SACKETT, CA ;
TOLLETT, JJ ;
HULET, RG .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1687-1690
[18]   Wave chaos as signature for depletion of a Bose-Einstein condensate [J].
Brezinova, Iva ;
Lode, Axel U. J. ;
Streltsov, Alexej I. ;
Alon, Ofir E. ;
Cederbaum, Lorenz S. ;
Burgdoerfer, Joachim .
PHYSICAL REVIEW A, 2012, 86 (01)
[19]   Quantum speed limit and optimal control of many-boson dynamics [J].
Brouzos, Ioannis ;
Streltsov, Alexej I. ;
Negretti, Antonio ;
Said, Ressa S. ;
Caneva, Tommaso ;
Montangero, Simone ;
Calarco, Tommaso .
PHYSICAL REVIEW A, 2015, 92 (06)
[20]   Low-temperature Bose-Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach [J].
Castin, Y ;
Dum, R .
PHYSICAL REVIEW A, 1998, 57 (04) :3008-3021