Variance of an anisotropic Bose-Einstein condensate

被引:14
作者
Klaiman, Shachar [1 ]
Beinke, Raphael [1 ]
Cederbaum, Lorenz S. [1 ]
Streltsov, Alexej I. [1 ,2 ]
Alon, Ofir E. [3 ,4 ]
机构
[1] Heidelberg Univ, Theoret Chem, Phys Chem Inst, Neuenheimer Feld 229, D-69120 Heidelberg, Germany
[2] Univ Kassel, Inst Phys, Heinrich Plett Str 40, D-34132 Kassel, Germany
[3] Univ Haifa, Dept Math, IL-3498838 Haifa, Israel
[4] Univ Haifa, Haifa Res Ctr Theoret Phys & Astrophys, IL-3498838 Haifa, Israel
基金
以色列科学基金会;
关键词
MANY-BODY PHYSICS; SCHRODINGER-EQUATION; DENSITY-MATRICES; NOBEL LECTURE; GAS; DYNAMICS; PARTICLE; SYSTEMS; MODEL;
D O I
10.1016/j.chemphys.2018.02.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The anisotropy of a trap potential can impact the density and variance of a Bose-Einstein condensate (BEC) in an opposite manner. We exemplify this effect for both the ground state and out-of-equilibrium dynamics of structureless bosons interacting by a long-range inter-particle interaction and trapped in a two-dimensional single-well potential. We demonstrate that even when the density of the BEC is, say, wider along the y direction and narrower along the x direction, its position variance can actually be smaller and momentum variance larger in the y direction than in the x direction. This behavior of the variance in a many-particle system is counterintuitive. It suggests using the variance as a tool to characterize the strength of correlations along the y and x directions in a trapped BEC. (C)2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 54
页数:10
相关论文
共 110 条
[1]   Bose-Einstein Condensation of Erbium [J].
Aikawa, K. ;
Frisch, A. ;
Mark, M. ;
Baier, S. ;
Rietzler, A. ;
Grimm, R. ;
Ferlaino, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[2]  
Alon O. E., 2005, PHYS REV LETT, V95
[3]   Solvable model of a generic trapped mixture of interacting bosons: reduced density matrices and proof of Bose-Einstein condensation [J].
Alon, Ofir E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (29)
[4]   Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems [J].
Alon, Ofir E. ;
Streltsov, Alexej I. ;
Cederbaum, Lorenz S. .
PHYSICAL REVIEW A, 2008, 77 (03)
[5]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[6]   Analytic solutions of topologically disjoint systems [J].
Armstrong, J. R. ;
Volosniev, A. G. ;
Fedorov, D. V. ;
Jensen, A. S. ;
Zinner, N. T. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (08)
[7]   Virial expansion coefficients in the harmonic approximation [J].
Armstrong, J. R. ;
Zinner, N. T. ;
Fedorov, D. V. ;
Jensen, A. S. .
PHYSICAL REVIEW E, 2012, 86 (02)
[8]   Analytic harmonic approach to the N-body problem [J].
Armstrong, J. R. ;
Zinner, N. T. ;
Fedorov, D. V. ;
Jensen, A. S. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (05)
[9]   Fragmented Many-Body Ground States for Scalar Bosons in a Single Trap [J].
Bader, Philipp ;
Fischer, Uwe R. .
PHYSICAL REVIEW LETTERS, 2009, 103 (06)
[10]   Theoretical progress in many-body physics with ultracold dipolar gases [J].
Baranov, M. A. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 464 (03) :71-111