Transition to Landau levels in graphene quantum dots

被引:40
作者
Libisch, F. [1 ]
Rotter, S. [1 ]
Guettinger, J. [2 ]
Stampfer, C. [2 ,3 ]
Burgdoerfer, J. [1 ]
机构
[1] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria
[2] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
[3] Rhein Westfal TH Aachen, Inst Phys, JARA FIT & 2, D-52074 Aachen, Germany
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 24期
基金
瑞士国家科学基金会;
关键词
ELECTRONIC-PROPERTIES; MAGNETIC-FIELDS; GRAPHITE;
D O I
10.1103/PhysRevB.81.245411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the electronic eigenstates of graphene quantum dots of realistic size (up to 80 nm diameter) in the presence of a perpendicular magnetic field B. Numerical tight-binding calculations and Coulomb-blockade measurements performed near the Dirac point exhibit the transition from the linear density of states at B=0 to the Landau-level regime at high fields. Details of this transition sensitively depend on the underlying graphene lattice structure, bulk defects, and localization effects at the edges. Key to the understanding of the parametric evolution of the levels is the strength of the valley-symmetry-breaking K-K' scattering. We show that the parametric variation in the level variance provides a quantitative measure for this scattering mechanism. We perform measurements of the parametric motion of Coulomb-blockade peaks as a function of magnetic field and find good agreement. We demonstrate that the magnetic-field dependence of graphene energy levels may serve as a sensitive indicator for the properties of graphene quantum dots and, in further consequence, for the validity of the Dirac picture.
引用
收藏
页数:9
相关论文
共 61 条
[1]   Magnetic-field dependence of energy levels in ultrasmall metal grains [J].
Adam, S ;
Polianski, ML ;
Waintal, X ;
Brouwer, PW .
PHYSICAL REVIEW B, 2002, 66 (19) :1-8
[2]   Hybrid scheduling for the parallel solution of linear systems [J].
Amestoy, PR ;
Guermouche, A ;
L'Excellent, JY ;
Pralet, S .
PARALLEL COMPUTING, 2006, 32 (02) :136-156
[3]   A fully asynchronous multifrontal solver using distributed dynamic scheduling [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Koster, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :15-41
[4]   Inner and outer edge states in graphene rings: A numerical investigation [J].
Bahamon, D. A. ;
Pereira, A. L. C. ;
Schulz, P. A. .
PHYSICAL REVIEW B, 2009, 79 (12)
[5]   NEUTRINO BILLIARDS - TIME-REVERSAL SYMMETRY-BREAKING WITHOUT MAGNETIC-FIELDS [J].
BERRY, MV ;
MONDRAGON, RJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 412 (1842) :53-74
[6]  
BURGDORFER J, 2004, NONADIABATIC TRANSIT, P205
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[9]  
DOMBAY N, 1999, PHYS REP, V315, P4158
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191