Learning from Physics Experiments with Quantum Computers: Applications in Muon Spectroscopy

被引:2
作者
McArdle, Sam [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
来源
PRX QUANTUM | 2021年 / 2卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
SPIN RELAXATION; MAGNETIC-MOMENT; POSITIVE MUONS; DIFFUSION; DYNAMICS; COMPUTATIONS; ALGORITHMS; ION;
D O I
10.1103/PRXQuantum.2.020349
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Computational physics is an important tool for analyzing, verifying, and at times-replacing physical experiments. Nevertheless, simulating quantum systems and analyzing quantum data has so far resisted an efficient classical treatment in full generality. While programmable quantum systems have been developed to address this challenge, the resources required for classically intractable problems still lie beyond our reach. In this work, we consider a new target for quantum-simulation algorithms; analyzing the data arising from physics experiments specifically, muon-spectroscopy experiments. These experiments can be used to probe the quantum interactions present in condensed-matter systems. However, fully analyzing their results can require classical computational resources scaling exponentially with the simulated system size, which can limit our understanding of the studied system. We show that this task may be a natural fit for the coming generations of quantum computers. We use classical emulations of our quantum algorithm on systems of up to 29 qubits to analyze real experimental data, and to estimate both the near-term and error-corrected resources required for our proposal. We find that our algorithm exhibits good noise resilience, stemming from our desire to extract global parameters from a fitted curve, rather than targeting any individual data point. In some respects, our fault tolerant resource estimates go further than some prior work in quantum simulation, by estimating the resources required to solve a complete task, rather than just to run a given circuit. Taking the overhead of observable measurement and calculating multiple datapoints into account, we find that significant challenges still remain if our algorithm is to become practical for analyzing muon-spectroscopy data.
引用
收藏
页数:35
相关论文
共 119 条
[1]  
[Anonymous], 2018, ARXIV180504492
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]  
Babbush R., 2020, ARXIV201103494
[4]  
Babbush R., 2020, ARXIV201104149
[5]   Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity [J].
Babbush, Ryan ;
Gidney, Craig ;
Berry, Dominic W. ;
Wiebe, Nathan ;
McClean, Jarrod ;
Paler, Alexandra ;
Fowler, Austin ;
Neven, Hartmut .
PHYSICAL REVIEW X, 2018, 8 (04)
[6]   Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation [J].
Babbush, Ryan ;
McClean, Jarrod ;
Wecker, Dave ;
Aspuru-Guzik, Alan ;
Wiebe, Nathan .
PHYSICAL REVIEW A, 2015, 91 (02)
[7]   Efficient quantum circuits for Schur and Clebsch-Gordan transforms [J].
Bacon, Dave ;
Chuang, Isaac L. ;
Harrow, Aram W. .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[8]  
Ballance C., 2014, ARXIV14065473
[9]  
Bartschi Andreas, 2019, Fundamentals of Computation Theory. 22nd International Symposium, FCT 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11651), P126, DOI 10.1007/978-3-030-25027-0_9
[10]   Ab initio strategy for muon site assignment in wide band gap fluorides [J].
Bernardini, F. ;
Bonfa, P. ;
Massidda, S. ;
De Renzi, R. .
PHYSICAL REVIEW B, 2013, 87 (11)