Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys

被引:26
作者
Dai, P. Q. [1 ,2 ]
Zhang, C. [1 ]
Wen, J. C. [1 ]
Rao, H. C. [1 ]
Wang, Q. T. [2 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Peoples R China
[2] Fujian Univ Technol, Coll Mat Sci & Engn, Fuzhou 350108, Peoples R China
关键词
electrodeposition; nanocrystalline; Ni-Cu alloys; tensile property; STACKING-FAULT ENERGY; GRAIN-SIZE; MECHANICAL-BEHAVIOR; HIGH DUCTILITY; HIGH-STRENGTH; FE ALLOY; DEFORMATION; METALS; EVOLUTION; STRESS;
D O I
10.1007/s11665-016-1881-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocrystalline Ni-Cu alloys with a Cu content of 6, 10, 19, and 32 wt.% were prepared by pulse electrodeposition. The microstructure and tensile properties of the nanocrystalline Ni-Cu alloys were characterized by x-ray diffraction, transmission electron microscopy, and tensile testing. The x-ray diffraction analysis indicates that the structure of the nanocrystalline Ni-Cu alloys is a face-centered cubic, single-phase solid solution with an average grain size of 18 to 24 nm, and that the average grain size decreased with increasing Cu content. The ultimate tensile strength (similar to 1265 to 1640 MPa) and elongation to failure (similar to 5.8 to 8.9%) of the Ni-Cu alloys increased with increasing Cu content. The increase in tensile strength results from the solid solution and fine-grain strengthening. Elemental Cu addition results in a decrease in stacking fault energy, an increase in work hardening rate, a delay in plasticity instability, and consequently, a higher plasticity.
引用
收藏
页码:594 / 600
页数:7
相关论文
共 37 条
[1]   Pulsed electrodeposition of nanocrystalline Cu-Ni alloy films and evaluation of their characteristic properties [J].
Baskaran, I. ;
Narayanan, T. S. N. Sankara ;
Stephen, A. .
MATERIALS LETTERS, 2006, 60 (16) :1990-1995
[2]   The influence of stacking fault energy on the wear resistance of nickel base alloys [J].
Chaudhuri, DK ;
Xie, D ;
Lakshmanan, AN .
WEAR, 1997, 209 (1-2) :140-152
[3]   Tensile properties of in situ consolidated nanocrystalline Cu [J].
Cheng, S ;
Ma, E ;
Wang, YM ;
Kecskes, LJ ;
Youssef, KM ;
Koch, CC ;
Trociewitz, UP ;
Han, K .
ACTA MATERIALIA, 2005, 53 (05) :1521-1533
[4]   Nanocrystalline electrodeposited Ni: microstructure and tensile properties [J].
Dalla Torre, F ;
Van Swygenhoven, H ;
Victoria, M .
ACTA MATERIALIA, 2002, 50 (15) :3957-3970
[5]   Tailoring and patterning the grain size of nanocrystalline alloys [J].
Detor, Andrew J. ;
Schuh, Christopher A. .
ACTA MATERIALIA, 2007, 55 (01) :371-379
[6]   Influence of dislocation-solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion [J].
Edalati, Kaveh ;
Akama, Daichi ;
Nishio, Asuki ;
Lee, Seungwon ;
Yonenaga, Yosuke ;
Cubero-Sesin, Jorge M. ;
Horita, Zenji .
ACTA MATERIALIA, 2014, 69 :68-77
[7]   Mechanical behavior of a bulk nanocrystalline Ni-Fe alloy [J].
Fan, G. J. ;
Fu, L. F. ;
Wang, G. Y. ;
Choo, H. ;
Liaw, P. K. ;
Browning, N. D. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 434 (SPEC. ISS.) :298-300
[8]   Improved pitting corrosion behaviour of electrodeposited nanocrystalline Ni-Cu alloys in 3.0 wt.% NaCl solution [J].
Ghosh, S. K. ;
Dey, G. K. ;
Dusane, R. O. ;
Grover, A. K. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 426 (1-2) :235-243
[9]   Nanocrystalline Ni-Cu alloy plating by pulse electrolysis [J].
Ghosh, SK ;
Grover, AK ;
Dey, GK ;
Totlani, MK .
SURFACE & COATINGS TECHNOLOGY, 2000, 126 (01) :48-63
[10]   NANOCRYSTALLINE MATERIALS [J].
BIRRINGER, R .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1989, 117 :33-43