Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries

被引:95
作者
Shehab, Mohammad K. [1 ]
Weeraratne, K. Shamara [1 ]
Huang, Tony [1 ]
Lao, Ka Un [1 ]
El-Kaderi, Hani M. [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Chem, Richmond, VA 23284 USA
关键词
covalent organic frameworks; sodium-ion batteries; redox-active COFs; electrochemical energy storage; organic electrodes; RAY PHOTOELECTRON-SPECTROSCOPY; ELECTRODE MATERIALS; LITHIUM BATTERIES; CATHODE MATERIALS; REDOX CHEMISTRY; ANODE MATERIAL; CARBON; POLYMER; NANOMATERIALS;
D O I
10.1021/acsami.0c20915
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Redox-active covalent organic frameworks (COFs) are a new class of material with the potential to transform electrochemical energy storage due to the well-defined porosity and readily accessible redox-active sites of COFs. However, combining both high specific capacity and energy density in COF-based batteries remains a considerable challenge. Herein, we demonstrate the exceptional performance of Aza-COF in rechargeable sodium-ion batteries (SIBs). Aza-COF is a microporous 2D COF synthesized from hexaketocyclohexane and 1,2,4,5-benzenetetramine by a condensation reaction, which affords phenazine-decorated channels and a theoretical specific capacity of 603 mA h g(-1). The Aza-COF-based electrode exhibits an exceptional average specific capacity (550 mA h g(-1)), energy density (492 W h kg(-1)) at 0.1 C, and power density (1182 W kg(-1)) at 40 C. The high capacity and energy density are attributed to swift surface-controlled redox processes and rapid sodium-ion diffusion inside the porous electrode. Rate capability studies showed that the battery also performs well at high current rates: 1 C (363 mA h g(-1)), 5 C (232 mA h g(-1)), 10 C (161 mA h g(-1)), and 20 C (103 mA h g(-1)). In addition, the long-term cycling stability test revealed very good capacity retention (87% at 5 C) and Coulombic efficiencies near unity over 500 cycles.
引用
收藏
页码:15083 / 15091
页数:9
相关论文
共 64 条
[1]  
Armand M, 2009, NAT MATER, V8, P120, DOI [10.1038/NMAT2372, 10.1038/nmat2372]
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   X-ray photoelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminium oxide reduction cells [J].
Brisson, P. -Y. ;
Darmstadt, H. ;
Fafard, M. ;
Adnot, A. ;
Servant, G. ;
Soucy, G. .
CARBON, 2006, 44 (08) :1438-1447
[4]   Polymeric Schiff Bases as Low-Voltage Redox Centers for Sodium-Ion Batteries** [J].
Castillo-Martinez, Elizabeth ;
Carretero-Gonzalez, Javier ;
Armand, Michel .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (21) :5341-5345
[5]   Covalent Organic Frameworks: Chemical Approaches to Designer Structures and Built-In Functions [J].
Chen, Xinyi ;
Geng, Keyu ;
Liu, Ruoyang ;
Tan, Ke Tian ;
Gong, Yifan ;
Li, Zhongping ;
Tao, Shanshan ;
Jiang, Qiuhong ;
Jiang, Donglin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (13) :5050-5091
[6]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[7]   β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage [J].
DeBlase, Catherine R. ;
Silberstein, Katharine E. ;
Thanh-Tam Truong ;
Abruna, Hector D. ;
Dichtel, William R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (45) :16821-16824
[8]   Sodium and Sodium-Ion Batteries: 50 Years of Research [J].
Delmas, Claude .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[9]   The atom, the molecule, and the covalent organic framework [J].
Diercks, Christian S. ;
Yaghi, Omar M. .
SCIENCE, 2017, 355 (6328)
[10]   Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki-Miyaura Coupling Reaction [J].
Ding, San-Yuan ;
Gao, Jia ;
Wang, Qiong ;
Zhang, Yuan ;
Song, Wei-Guo ;
Su, Cheng-Yong ;
Wang, Wei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (49) :19816-19822