Negative X-ray expansion in cadmium cyanide

被引:11
作者
Coates, Chloe S. [1 ,2 ]
Murray, Claire A. [3 ]
Bostroem, Hanna L. B. [1 ,4 ]
Reynolds, Emily M. [1 ,5 ]
Goodwin, Andrew L. [1 ]
机构
[1] Inorgan Chem Lab, South Pk Rd, Oxford OX1 3QR, England
[2] Dept Chem, Lensfield Rd, Cambridge, England
[3] Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England
[4] Max Planck Inst Solid State Res, Nanochem Dept, Heisenbergstr 1, D-70569 Stuttgart, Germany
[5] STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
RADIATION-DAMAGE; THERMAL-EXPANSION; INDUCED DECOMPOSITION; SPIN-CROSSOVER; CRYSTALLOGRAPHY; TRANSITION; DEPENDENCE; PRESSURE; DESIGN; ENERGY;
D O I
10.1039/d0mh01989e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cadmium cyanide, Cd(CN)(2), is a flexible coordination polymer best studied for its strong and isotropic negative thermal expansion (NTE) effect. Here we show that this NTE is actually X-ray-exposure dependent: Cd(CN)(2) contracts not only on heating but also on irradiation by X-rays. This behaviour contrasts that observed in other beam-sensitive materials, for which X-ray exposure drives lattice expansion. We call this effect 'negative X-ray expansion' (NXE) and suggest its origin involves an interaction between X-rays and cyanide 'flips'; in particular, we rule out local heating as a possible mechanism. Irradiation also affects the nature of a low-temperature phase transition. Our analysis resolves discrepancies in NTE coefficients reported previously on the basis of X-ray diffraction measurements, and we establish the 'true' NTE behaviour of Cd(CN)(2) across the temperature range 150-750 K. The interplay between irradiation and mechanical response in Cd(CN)(2) highlights the potential for exploiting X-ray exposure in the design of functional materials.
引用
收藏
页码:1446 / 1453
页数:8
相关论文
共 53 条
  • [1] [Anonymous], 2019, ARXIV190405749
  • [2] Blake C., 1962, Proceedings of the Symposium on the Biological Effects of Ionising Radiation at the Molecular Level (Vienna: International Atomic Energy Agency), P183
  • [3] Spin crossover in the Prussian blue analogue FePt(CN)6 induced by pressure or X-ray irradiation
    Bostrom, Hanna L. B.
    Cairns, Andrew B.
    Liu, Lei
    Lazor, Peter
    Collings, Ines E.
    [J]. DALTON TRANSACTIONS, 2020, 49 (37) : 12940 - 12944
  • [4] Development of tools to automate quantitative analysis of radiation damage in SAXS experiments
    Brooks-Bartlett, Jonathan C.
    Batters, Rebecca A.
    Bury, Charles S.
    Lowe, Edward D.
    Ginn, Helen Mary
    Round, Adam
    Garman, Elspeth F.
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2017, 24 : 63 - 72
  • [5] Estimate your dose: RADDOSE-3D
    Bury, Charles S.
    Brooks-Bartlett, Jonathan C.
    Walsh, Steven P.
    Garman, Elspeth F.
    [J]. PROTEIN SCIENCE, 2018, 27 (01) : 217 - 228
  • [6] Rational Design of Materials with Extreme Negative Compressibility: Selective Soft-Mode Frustration in KMn[Ag(CN)2]3
    Cairns, Andrew B.
    Thompson, Amber L.
    Tucker, Matthew G.
    Haines, Julien
    Goodwin, Andrew L.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (10) : 4454 - 4456
  • [7] When X-rays modify the protein structure: radiation damage at work
    Carugo, O
    Carugo, KD
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2005, 30 (04) : 213 - 219
  • [8] Chen C., 2017, Angew. Chem, V129
  • [9] Radiation damage in small-molecule crystallography: fact not fiction
    Christensen, Jeppe
    Horton, Peter N.
    Bury, Charles S.
    Dickerson, Joshua L.
    Taberman, Helena
    Garman, Elspeth F.
    Coles, Simon J.
    [J]. IUCRJ, 2019, 6 : 703 - 713
  • [10] PASCal: a principal axis strain calculator for thermal expansion and compressibility determination
    Cliffe, Matthew J.
    Goodwin, Andrew L.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2012, 45 : 1321 - 1329