Negative X-ray expansion in cadmium cyanide

被引:11
作者
Coates, Chloe S. [1 ,2 ]
Murray, Claire A. [3 ]
Bostroem, Hanna L. B. [1 ,4 ]
Reynolds, Emily M. [1 ,5 ]
Goodwin, Andrew L. [1 ]
机构
[1] Inorgan Chem Lab, South Pk Rd, Oxford OX1 3QR, England
[2] Dept Chem, Lensfield Rd, Cambridge, England
[3] Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England
[4] Max Planck Inst Solid State Res, Nanochem Dept, Heisenbergstr 1, D-70569 Stuttgart, Germany
[5] STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
RADIATION-DAMAGE; THERMAL-EXPANSION; INDUCED DECOMPOSITION; SPIN-CROSSOVER; CRYSTALLOGRAPHY; TRANSITION; DEPENDENCE; PRESSURE; DESIGN; ENERGY;
D O I
10.1039/d0mh01989e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cadmium cyanide, Cd(CN)(2), is a flexible coordination polymer best studied for its strong and isotropic negative thermal expansion (NTE) effect. Here we show that this NTE is actually X-ray-exposure dependent: Cd(CN)(2) contracts not only on heating but also on irradiation by X-rays. This behaviour contrasts that observed in other beam-sensitive materials, for which X-ray exposure drives lattice expansion. We call this effect 'negative X-ray expansion' (NXE) and suggest its origin involves an interaction between X-rays and cyanide 'flips'; in particular, we rule out local heating as a possible mechanism. Irradiation also affects the nature of a low-temperature phase transition. Our analysis resolves discrepancies in NTE coefficients reported previously on the basis of X-ray diffraction measurements, and we establish the 'true' NTE behaviour of Cd(CN)(2) across the temperature range 150-750 K. The interplay between irradiation and mechanical response in Cd(CN)(2) highlights the potential for exploiting X-ray exposure in the design of functional materials.
引用
收藏
页码:1446 / 1453
页数:8
相关论文
共 53 条
[1]  
[Anonymous], 2019, ARXIV190405749
[2]  
Blake C., 1962, Proceedings of the Symposium on the Biological Effects of Ionising Radiation at the Molecular Level (Vienna: International Atomic Energy Agency), P183
[3]   Spin crossover in the Prussian blue analogue FePt(CN)6 induced by pressure or X-ray irradiation [J].
Bostrom, Hanna L. B. ;
Cairns, Andrew B. ;
Liu, Lei ;
Lazor, Peter ;
Collings, Ines E. .
DALTON TRANSACTIONS, 2020, 49 (37) :12940-12944
[4]   Development of tools to automate quantitative analysis of radiation damage in SAXS experiments [J].
Brooks-Bartlett, Jonathan C. ;
Batters, Rebecca A. ;
Bury, Charles S. ;
Lowe, Edward D. ;
Ginn, Helen Mary ;
Round, Adam ;
Garman, Elspeth F. .
JOURNAL OF SYNCHROTRON RADIATION, 2017, 24 :63-72
[5]   Estimate your dose: RADDOSE-3D [J].
Bury, Charles S. ;
Brooks-Bartlett, Jonathan C. ;
Walsh, Steven P. ;
Garman, Elspeth F. .
PROTEIN SCIENCE, 2018, 27 (01) :217-228
[6]   Rational Design of Materials with Extreme Negative Compressibility: Selective Soft-Mode Frustration in KMn[Ag(CN)2]3 [J].
Cairns, Andrew B. ;
Thompson, Amber L. ;
Tucker, Matthew G. ;
Haines, Julien ;
Goodwin, Andrew L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (10) :4454-4456
[7]   When X-rays modify the protein structure: radiation damage at work [J].
Carugo, O ;
Carugo, KD .
TRENDS IN BIOCHEMICAL SCIENCES, 2005, 30 (04) :213-219
[8]  
Chen C., 2017, ANGEW CHEM, V129, P14650, DOI 10.1002/ange.201707290
[9]   Radiation damage in small-molecule crystallography: fact not fiction [J].
Christensen, Jeppe ;
Horton, Peter N. ;
Bury, Charles S. ;
Dickerson, Joshua L. ;
Taberman, Helena ;
Garman, Elspeth F. ;
Coles, Simon J. .
IUCRJ, 2019, 6 :703-713
[10]   PASCal: a principal axis strain calculator for thermal expansion and compressibility determination [J].
Cliffe, Matthew J. ;
Goodwin, Andrew L. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2012, 45 :1321-1329