Group-based multi-trajectory modeling

被引:556
作者
Nagin, Daniel S. [1 ]
Jones, Bobby L. [2 ]
Passos, Valeria Lima [3 ]
Tremblay, Richard E. [4 ]
机构
[1] Carnegie Mellon Univ, Sch Publ Policy & Management, Heinz Coll, Pittsburgh, PA 15206 USA
[2] Univ Pittsburgh, Western Psychiat Inst & Clin, Med Ctr, 3811 Ohara St, Pittsburgh, PA 15213 USA
[3] Maastricht Univ, Dept Methodol & Stat, Maastricht, Netherlands
[4] Univ Coll Dublin, Sch Publ Hlth Physiotherapy & Sports Sci, Dublin, Ireland
关键词
Longitudinal analysis of multiple outcomes; group-based trajectory modeling; latent class analysis; trajectories of multiple disease biomarkers; MULTIVARIATE;
D O I
10.1177/0962280216673085
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Identifying and monitoring multiple disease biomarkers and other clinically important factors affecting the course of a disease, behavior or health status is of great clinical relevance. Yet conventional statistical practice generally falls far short of taking full advantage of the information available in multivariate longitudinal data for tracking the course of the outcome of interest. We demonstrate a method called multi-trajectory modeling that is designed to overcome this limitation. The method is a generalization of group-based trajectory modeling. Group-based trajectory modeling is designed to identify clusters of individuals who are following similar trajectories of a single indicator of interest such as post-operative fever or body mass index. Multi-trajectory modeling identifies latent clusters of individuals following similar trajectories across multiple indicators of an outcome of interest (e.g., the health status of chronic kidney disease patients as measured by their eGFR, hemoglobin, blood CO2 levels). Multi-trajectory modeling is an application of finite mixture modeling. We lay out the underlying likelihood function of the multi-trajectory model and demonstrate its use with two examples.
引用
收藏
页码:2015 / 2023
页数:9
相关论文
共 15 条
[1]  
[Anonymous], HDB QUANTITATIVE MET
[2]   Group-Based Trajectory Modeling of Suppression Ratio After Cardiac Arrest [J].
Elmer, Jonathan ;
Gianakas, John J. ;
Rittenberger, Jon C. ;
Baldwin, Maria E. ;
Faro, John ;
Plummer, Cheryl ;
Shutter, Lori A. ;
Wassel, Christina L. ;
Callaway, Clifton W. ;
Fabio, Anthony .
NEUROCRITICAL CARE, 2016, 25 (03) :415-423
[3]   A METHOD FOR MINIMIZING THE IMPACT OF DISTRIBUTIONAL ASSUMPTIONS IN ECONOMETRIC-MODELS FOR DURATION DATA [J].
HECKMAN, J ;
SINGER, B .
ECONOMETRICA, 1984, 52 (02) :271-320
[4]   Advances in group-based trajectory modeling and an SAS procedure for estimating them [J].
Jones, Bobby L. ;
Nagin, Daniel S. .
SOCIOLOGICAL METHODS & RESEARCH, 2007, 35 (04) :542-571
[5]   A Note on a Stata Plugin for Estimating Group-based Trajectory Models [J].
Jones, Bobby L. ;
Nagin, Daniel S. .
SOCIOLOGICAL METHODS & RESEARCH, 2013, 42 (04) :608-613
[6]  
Klijn SL, 2015, STAT METHODS MED RES, P1
[7]   A multivariate finite mixture latent trajectory model with application to dementia studies [J].
Lai, Dongbing ;
Xu, Huiping ;
Koller, Daniel ;
Foroud, Tatiana ;
Gao, Sujuan .
JOURNAL OF APPLIED STATISTICS, 2016, 43 (14) :2503-2523
[8]  
McLachlan G., 2000, WILEY SER PROB STAT, V1, DOI 10.1002/0471721182
[9]  
Nagin D. S., 2005, GROUP BASED MODELING
[10]   AGE, CRIMINAL CAREERS, AND POPULATION HETEROGENEITY - SPECIFICATION AND ESTIMATION OF A NONPARAMETRIC, MIXED POISSON MODEL [J].
NAGIN, DS ;
LAND, KC .
CRIMINOLOGY, 1993, 31 (03) :327-362