The random k cycle walk on the symmetric group

被引:6
作者
Hough, Bob [1 ]
机构
[1] Stanford Univ, Dept Math, 450 Serra Mall, Stanford, CA 94305 USA
基金
欧洲研究理事会;
关键词
Random walk on a group; Character bounds; Symmetric group; Cut-off phenomenon; FINITE-GROUPS; CHARACTERS; BOUNDS;
D O I
10.1007/s00440-015-0636-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the random walk on the symmetric group generated by the conjugacy class of cycles of length k. We show that the convergence to uniform measure of this walk has a cut-off in total variation distance after steps, uniformly in as . The analysis follows from a new asymptotic estimation of the characters of the symmetric group evaluated at cycles.
引用
收藏
页码:447 / 482
页数:36
相关论文
共 20 条
[11]   Characters of symmetric groups: sharp bounds and applications [J].
Larsen, Michael ;
Shalev, Aner .
INVENTIONES MATHEMATICAE, 2008, 174 (03) :645-687
[12]   Rapidly mixing random walks and bounds on characters of the symmetric group [J].
Lulov, N ;
Pak, I .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2002, 16 (02) :151-163
[13]  
Lulov N., 1996, THESIS HARVARD U
[14]  
Macdonald I., 1979, SYMMETRIC FUNCTIONS
[15]   Upper bound on the characters of the symmetric groups [J].
Roichman, Y .
INVENTIONES MATHEMATICAE, 1996, 125 (03) :451-485
[16]  
Roichman Yuval., 1996, Emerging applications of number theory
[17]  
Roussel S., 1999, THESIS TOULOUSE
[18]  
Saloff-Coste L, 2004, ENCYL MATH SCI, V110, P263
[19]  
Saloff-Coste L, 2008, ALEA-LAT AM J PROBAB, V4, P359
[20]  
Vershik A. M., 1981, FUNKTSIONAL ANAL PRI, V15, P96