Construction of a peridynamic model for transient advection-diffusion problems

被引:60
|
作者
Zhao, Jiangming [1 ]
Chen, Ziguang [2 ,3 ]
Mehrmashhadi, Javad [1 ]
Bobaru, Florin [1 ]
机构
[1] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
[2] Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Hubei, Peoples R China
[3] Hubei Key Lab Engn Struct Anal & Safety Assessmen, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
关键词
Peridynamics; Transient advection-diffusion; Upwind scheme; Central scheme; Heterogeneity; DYNAMIC FRACTURE; ADAPTIVE REFINEMENT; FLUID TRANSPORT; ELEMENT-METHOD; DRIVEN CRACKS; FORMULATION; DAMAGE; EQUATION; DEFORMATION; PROPAGATION;
D O I
10.1016/j.ijheatmasstransfer.2018.06.075
中图分类号
O414.1 [热力学];
学科分类号
摘要
We introduce a transient advection-diffusion peridynamic model using a constructive approach. We verify our model against the classical model in 1D and 2D, and we find that in the limit of the peridynamic horizon going to zero the peridynamic solutions converge to the classical ones. We find that a hybrid between upwind and central models performs better in advection-dominated cases. We compute solutions to sample problems in heterogeneous domains for two different conditions and observe the contrast between the solutions depending on microstructure and material properties. Remarkably, no extra effort was required in producing solutions for the complex, heterogeneous cases. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1253 / 1266
页数:14
相关论文
共 50 条
  • [1] A peridynamic model for advection-reaction-diffusion problems
    Tian, Chenwen
    Fan, Shuaiqi
    Du, Juan
    Zhou, Zhikun
    Chen, Ziguang
    Bobaru, Florin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 415
  • [2] TRANSIENT EFFECTS IN ADVECTION-DIFFUSION OF IMPURITIES
    POMEAU, Y
    PUMIR, A
    YOUNG, WR
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1988, 306 (12): : 741 - 746
  • [3] Stability of the SUPG finite element method for transient advection-diffusion problems
    Bochev, PB
    Gunzburger, MD
    Shadid, JN
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (23-26) : 2301 - 2323
  • [4] CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS
    BREZZI, F
    RUSSO, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (04): : 571 - 587
  • [5] A Meshless Method for Advection-Diffusion Problems
    Xue, Dangqin
    Zhao, Huanping
    Zhang, Jiaxi
    Hou, Shulin
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 1594 - +
  • [6] Enhanced coercivity for pure advection and advection-diffusion problems
    Canuto, Claudio
    JOURNAL OF SCIENTIFIC COMPUTING, 2006, 28 (2-3) : 223 - 244
  • [7] Variational principles for advection-diffusion problems
    Auchmuty, Giles
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 1882 - 1886
  • [8] A nonlinear subgrid method for advection-diffusion problems
    Santos, Isaac P.
    Almeida, Regina C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (45-48) : 4771 - 4778
  • [9] An 'advection-diffusion' model for grain growth
    Player, MA
    Shi, Z
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (03) : 468 - 474
  • [10] Modeling subgrid viscosity for advection-diffusion problems
    Brezzi, F
    Houston, P
    Marini, D
    Süli, E
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (13-14) : 1601 - 1610