A new method for assessment of bunch compactness using automated image analysis

被引:43
作者
Cubero, S. [1 ,2 ]
Diago, M. P. [2 ]
Blasco, J. [1 ]
Tardaguila, J. [2 ]
Prats-Montalban, J. M. [3 ]
Ibanez, J. [2 ]
Tello, J. [2 ]
Aleixos, N. [4 ]
机构
[1] Inst Valenciano Invest Agr, Ctr Agroingn, E-46113 Moncada, Spain
[2] Univ La Rioja, CSIC, Inst Ciencias Vid & Vino, Gobierno La Rioja, Logrono, Spain
[3] Univ Politecn Valencia, Dept Estadist & IO Aplicadas & Calidad, Grp Ingn Estadist Multivariante, E-46022 Valencia, Spain
[4] Univ Politecn Valencia, Inst Interuniv Invest Bioingn & Tecnol Orientada, E-46022 Valencia, Spain
关键词
bunch architecture; bunch morphology; computer vision; multivariate analysis; PLS model; SHAPE-ANALYSIS; LEAF REMOVAL; GRAPEVINE; BERRIES; YIELD; PREDICTION; EFFICIENCY; MACHINE; VISION; NUMBER;
D O I
10.1111/ajgw.12118
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Background and AimsBunch compactness is a key feature determining grape and wine composition because tight bunches show a less homogeneous ripening, and are prone to greater fungal disease incidence. The Organisation Internationale de la Vigne et du Vin descriptor, the most recent method for the assessment of bunch compactness, requires visual inspection and trained evaluators, and provides subjective and qualitative values. The aim of this work was to develop a methodology based on image analysis to determine bunch compactness in a non-invasive, objective and quantitative way. Methods and ResultsNinety bunches of nine different red cultivars of Vitis viniferaL. were photographed with a colour camera, and their bunch compactness was determined by visual inspection. A predictive partial least squares (PLS) model was developed in order to estimate bunch compactness from the morphological features extracted by automated image analysis, after the supervised segmentation of the images. The PLS model showed a capability of 85.3% for predicting correctly the rating of bunch compactness. The most discriminant variables of the model were highly correlated with the tightness of the berries in the bunch (proportion of visibility of berries, rachis and holes) and with the shape of the bunch (roundness, compactness shape factor and aspect ratio). ConclusionsThe non-invasive, image analysis methodology presented here enables the quantitative assessment of bunch compactness, thereby providing precise objective information for this key parameter. Significance of the StudyA quantitative, objective and accurate system based on image analysis was developed as an alternative to current visual methods for the estimation of bunch compactness. This novel method could be applied to the classification of table grapes and/or at the receival point of wineries for sorting and assessment of wine grapes before vinification.
引用
收藏
页码:101 / 109
页数:9
相关论文
共 42 条
[1]  
[Anonymous], 2009, Principles of Digital Image Processing, Core Algorithms
[2]  
[Anonymous], 1979, Proceedings of the International Workshop on Image Processing
[3]  
[Anonymous], 1989, MULTIVARIATE CALIBRA
[4]  
[Anonymous], 2000, IMAGE PROCESSING FOO
[5]   Effects of Sunlight Exposure on Grapevine Powdery Mildew Development [J].
Austin, Craig N. ;
Wilcox, Wayne F. .
PHYTOPATHOLOGY, 2012, 102 (09) :857-866
[6]   Development of a machine for the automatic sorting of pomegranate (Punica granatum) arils based on computer vision [J].
Blasco, J. ;
Cubero, S. ;
Gomez-Sanchis, J. ;
Mira, P. ;
Molto, E. .
JOURNAL OF FOOD ENGINEERING, 2009, 90 (01) :27-34
[7]   Automatic sorting of satsuma, (Citrus unshiu) segments using computer vision and morphological features [J].
Blasco, J. ;
Aleixos, N. ;
Cubero, S. ;
Gomez-Sanchis, J. ;
Molto, E. .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2009, 66 (01) :1-8
[8]   Standard error of prediction for multilinear PLS -: 2.: Practical implementation in fluorescence spectroscopy [J].
Bro, R ;
Rinnan, Å ;
Faber, NM .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 75 (01) :69-76
[9]  
Chen Ying Chen Ying, 2010, Nongye Jixie Xuebao = Transactions of the Chinese Society for Agricultural Machinery, V41, P169
[10]   Shape Analysis of Agricultural Products: A Review of Recent Research Advances and Potential Application to Computer Vision [J].
Costa, Corrado ;
Antonucci, Francesca ;
Pallottino, Federico ;
Aguzzi, Jacopo ;
Sun, Da-Wen ;
Menesatti, Paolo .
FOOD AND BIOPROCESS TECHNOLOGY, 2011, 4 (05) :673-692