Probing DNA polymerase-DNA interactions: Examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching

被引:21
作者
Tleugabulova, Dina [1 ]
Reha-Krantz, Linda J. [1 ]
机构
[1] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada
关键词
D O I
10.1021/bi700380a
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The bacteriophage T4 DNA polymerase forms fluorescent complexes with DNA substrates labeled with 2-aminopurine (2AP) in the template strand; the fluorescence intensity depends on the position of 2AP. When preexonuclease complexes are formed, complexes at the crossroads between polymerase and exonuclease complexes, 2AP in the +1 position in the template strand is fully free of contacts with the adjacent bases as indicated by high fluorescence intensity and a long fluorescence lifetime of about 10.9 ns. Fluorescence intensity decreases for 2AP in the template strand when the primer end is transferred to the exonuclease active center to form exonuclease complexes, which indicates a change in DNA conformation; 2AP can now interact with adjacent bases, which quenches fluorescence emission. Some polymerase-induced base unstacking for 2AP in the template strand in exonuclease complexes is observed but is restricted primarily to the n and +1 positions, which indicates that the DNA polymerase holds the template strand in a way that forces base unstacking only in a small region near the primer terminus. A hold on the template strand will help to maintain the correct alignment of the template and primer strands during proofreading. Acrylamide quenches 2AP fluorescence in preexonuclease and in exonuclease complexes formed with DNA labeled with 2AP in the template strand, which indicates that the template strand remains accessible to solvent in both complexes. These studies provide new information about the conformation of the template strand in exonuclease complexes that is not available from structural studies.
引用
收藏
页码:6559 / 6569
页数:11
相关论文
共 34 条
[1]   Identification of a transient excision intermediate at the crossroads between DNA polymerase extension and proofreading pathways [J].
Baker, RP ;
Reha-Krantz, LJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3507-3512
[2]   Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase [J].
Beechem, JM ;
Otto, MR ;
Bloom, LB ;
Eritja, R ;
Reha-Krantz, LJ ;
Goodman, MF .
BIOCHEMISTRY, 1998, 37 (28) :10144-10155
[3]   STUDIES ON BIOCHEMICAL BASIS OF SPONTANEOUS MUTATION .5. EFFECT OF TEMPERATURE ON MUTATION FREQUENCY [J].
BESSMAN, MJ ;
REHAKRANTZ, LJ .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 116 (01) :115-123
[4]   PRE-STEADY-STATE KINETIC-ANALYSIS OF SEQUENCE-DEPENDENT NUCLEOTIDE EXCISION BY THE 3'-EXONUCLEASE ACTIVITY OF BACTERIOPHAGE-T4 DNA-POLYMERASE [J].
BLOOM, LB ;
OTTO, MR ;
ERITJA, R ;
REHAKRANTZ, LJ ;
GOODMAN, MF ;
BEECHEM, JM .
BIOCHEMISTRY, 1994, 33 (24) :7576-7586
[5]   COMPILATION, ALIGNMENT, AND PHYLOGENETIC-RELATIONSHIPS OF DNA-POLYMERASES [J].
BRAITHWAITE, DK ;
ITO, J .
NUCLEIC ACIDS RESEARCH, 1993, 21 (04) :787-802
[6]   Structural principles for the inhibition of the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates [J].
Brautigam, CA ;
Steitz, TA .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 277 (02) :363-377
[7]   KINETIC CHARACTERIZATION OF THE POLYMERASE AND EXONUCLEASE ACTIVITIES OF THE GENE-43 PROTEIN OF BACTERIOPHAGE-T4 [J].
CAPSON, TL ;
PELISKA, JA ;
KABOORD, BF ;
FREY, MW ;
LIVELY, C ;
DAHLBERG, M ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1992, 31 (45) :10984-10994
[8]  
CLAYTON LK, 1979, J BIOL CHEM, V254, P1902
[9]   Using 2-aminopurine fluorescence to measure incorporation of incorrect nucleotides by wild type and mutant bacteriophage T4 DNA Polymerases [J].
da Silva, EF ;
Mandal, SS ;
Reha-Krantz, LJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (43) :40640-40649
[10]   Mutational and pH studies of the 3′→5′ exonuclease activity of bacteriophage T4 DNA polymerase [J].
Elisseeva, E ;
Mandal, SS ;
Reha-Krantz, LJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (35) :25151-25158