Poisson-Nijenhuis structures on quiver path algebras

被引:0
|
作者
Bartocci, Claudio [1 ]
Tacchella, Alberto [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
关键词
Quiver representations; Bihamiltonian structures; Integrable systems; Calogero-Moser system; NONCOMMUTATIVE SYMPLECTIC-GEOMETRY; YANG-MILLS THEORY; BIHAMILTONIAN STRUCTURES; INTEGRABLE SYSTEMS; DUALITY; MODEL;
D O I
10.1007/s11005-017-0940-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a notion of noncommutative Poisson-Nijenhuis structure on the path algebra of a quiver. In particular, we focus on the case when the Poisson bracket arises from a noncommutative symplectic form. The formalism is then applied to the study of the Calogero-Moser and Gibbons-Hermsen integrable systems. In the former case, we give a new interpretation of the bihamiltonian reduction performed in Bartocci et al. (Int Math Res Not 2010:279-296, 2010. arXiv:0902.0953).
引用
收藏
页码:1265 / 1291
页数:27
相关论文
共 50 条
  • [1] Poisson–Nijenhuis structures on quiver path algebras
    Claudio Bartocci
    Alberto Tacchella
    Letters in Mathematical Physics, 2017, 107 : 1265 - 1291
  • [2] POISSON-NIJENHUIS STRUCTURES
    KOSMANNSCHWARZBACH, Y
    MAGRI, F
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1990, 53 (01): : 35 - 81
  • [3] A generalization of Poisson-Nijenhuis structures
    Wade, A
    JOURNAL OF GEOMETRY AND PHYSICS, 2001, 39 (03) : 217 - 232
  • [4] A lecture on Poisson-Nijenhuis structures
    Vaisman, I
    INTEGRABLE SYSTEMS AND FOLIATIONS, 1997, 145 : 169 - 185
  • [5] A class of Poisson-Nijenhuis structures on a tangent bundle
    Sarlet, W
    Vermeire, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (24): : 6319 - 6336
  • [6] POISSON-NIJENHUIS GROUPOIDS
    Das, Apurba
    REPORTS ON MATHEMATICAL PHYSICS, 2019, 84 (03) : 303 - 331
  • [7] Invariant Poisson-Nijenhuis structures on Lie groups and classification
    Ravanpak, Zohreh
    Rezaei-Aghdam, Adel
    Haghighatdoost, Ghorbanali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (04)
  • [8] Variational Poisson-Nijenhuis structures for partial differential equations
    Golovko, V. A.
    Krasil'shchik, I. S.
    Verbovetsky, A. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 154 (02) : 227 - 239
  • [9] Variational Poisson-Nijenhuis structures for partial differential equations
    V. A. Golovko
    I. S. Krasil’shchik
    A. M. Verbovetsky
    Theoretical and Mathematical Physics, 2008, 154 : 227 - 239
  • [10] Reduction of Poisson-Nijenhuis manifolds
    Vaisman, I
    JOURNAL OF GEOMETRY AND PHYSICS, 1996, 19 (01) : 90 - 98